首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0.
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使=0.
admin
2021-11-09
94
问题
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0,试证明存在ξ∈(a,b)使
=0.
选项
答案
令φ(χ)=f(χ)∫
χ
b
g(t)dt+g(χ)∫
a
χ
f(t)dt,φ(χ)在区间[a,b]上连续,在区间(a,b)内可导,且 φ′(χ)=[f′(χ)∫
χ
b
g(t)dt-f(χ)g(χ)]+[g(χ)f(χ)+g′(χ)∫
a
χ
f(t)df] =f′(χ)∫
χ
b
g(t)dt+g′(χ)∫
a
χ
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ′(ξ)=0,即 f′(ξ)∫
ξ
b
g(t)dt+g′(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g′(χ)<0,所以区间(a,b)内必有g(χ)>0, 从而就有∫
χ
b
g(t)dt>0, 于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/iry4777K
0
考研数学二
相关试题推荐
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域,记为A,B,它们有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
=_______.
证明:连续函数取绝对值后函数仍保持连续性,并举例说明可导函数取绝对值不一定保持可导性.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为().
令f(x)=x-[x],求极限.
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
求极限
求下列极限,能直接使用洛必达法则的是[].
随机试题
生产经营单位主要负责人在本单位发生重大生产事故时,没有立即组织抢救而逃匿的,除给予降职、撤职处分外,还处()以下拘留。
Mostparents,Isuppose,havehadtheexperienceofreadingabedtimestorytotheirchildren.Andtheymusthave【C1】______howd
佝偻病活动期应用大剂量维生素D治疗时应()
A.圆环病毒2型B.胸膜肺炎放线杆菌C.密螺旋体D.兔病毒性出血症病毒E.溶血性大肠杆菌兔瘟的病原是()。
房地产经纪人对客源资源有效利用的前提是()。
下列有关项目质量控制复核的说法中,正确的有()。
A.DoyouhavethebaggageclaimtagsB.I’vebeenwaitinginthebaggageclaimareaforonehourC.weareterriblysorryfort
Tradeiscentraltohumanhealth,prosperityandsocialwelfare.【R1】______Examplesoftradeindailylifearesoabundanttheys
求和平、促发展、谋合作是世界各国人民的共同心愿,也是不可阻挡的(irresistible)历史潮流。特别是世界多极化(multi—polarization)和经济全球化(economicglobalization)趋势的深入发展。给世界和平与发展带来了新
TopicMyViewonTravelForthispart,youareallowed30minutestowriteashortessayentitledMyViewonTravelfollowing
最新回复
(
0
)