首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
admin
2018-12-21
49
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ﹢η=(1,2,-3)
T
﹢ (2,-1,1)
T
,其中k为任意常数.证明:
(I)方程组(α
1
,α
2
)x=β有唯一解,并求该解;
(Ⅱ)方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x-β有无穷多解,并求其通解.
选项
答案
由题设条件(α
1
,α
2
,α
3
)x=β有通解k(1,2,-3)
T
﹢(2,-1,1)
T
,知 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=2, (*) α
1
﹢2α
2
-3α
3
=0, (**) β=(k﹢22)α
1
﹢(2k-1)α
2
﹢(-3k﹢1)α
3
. (***) (I)由(**)式得α
3
[*]1(α
1
﹢2α
2
),知α
1
,α
2
线性无关(若α
1
,α
2
线性相关,又α
3
=[*](α
1
﹢2α
2
),得r(α
1
,α
2
,α
3
)=1,这和(*)式矛盾).由(*)式知α
1
,α
2
是向量组α
1
,α
2
,α
3
及α
1
,α
2
,α
3
,β的极大线性无关组,从而有r(α
1
1,α
2
)=r(α
1
,α
2
,β)=2,方程组(α
1
,α
2
)x=β有唯一解. 由(***)式取α
3
的系数-3k﹢1=0,即取 [*],即(α
1
,α
2
)x=β的唯一解为[*] (Ⅱ)因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
,β)=2,故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
,其中ξ
1
,ξ
2
为对应的齐次方程组的基础解系,η
*
为方程组的特解,k
1
,k
2
为任意常数. 由(**)式 α
1
﹢2α
2
-3α
3
=(α
1
,α
2
,α
3
)[*]=0. 得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 在(***)式中取k=0,有 2α
1
-α
2
﹢α
3
=(α
1
,α
2
,α
3
)[*]=β, 则得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 观察得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β的通解为 k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
=k
1
ξ
1
﹢k
2
(η
1
-η
2
)﹢η
1
=k
1
(0,1,2,-3)
T
﹢k
2
(-1,3,0,2)
T
﹢(0,2,-1,1)
T
, 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/j8j4777K
0
考研数学二
相关试题推荐
(1998年)设y=f(χ)是区间[0,1]上任一非负连续函数.(1)试证存在χ0∈(0,1),使得在区间在区间[0,χ0]上以f(χ0)为高的矩形的面积等于在区间[χ0,1]上以y=f(χ)为曲面的曲边梯形的面积.(2)又设f(χ)在
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2.(Ⅰ)求实数a的值;(Ⅱ)求正交变换χ=Qy将f化为标准形.
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α2,Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的。
随机试题
若有关系模式:部门(部门号,部门名),其中部门号为主键,则下列一定无法完成的操作是________。
Lazinessisasin.Everyoneknowsthat.Wehaveprobablyallhadlecturespointingoutthatlazinessisimmoral,thatitiswast
在有一定密度的森林内,随着时间的推移,森林内植物的株数和生长发生速率会不断减小,这种现象叫做______。
肝的库普弗细胞位于_______,具有_______功能,贮脂细胞位于_______,具有_______和_______功能。
男性,36岁,因胃穿孔行急诊手术。术后第6天出现发热、寒战、右上腹痛及呃逆。查体:右肺呼吸音低,呼吸移动减弱,胸片示右膈活动受限,肋膈角不清。白细胞18.1×109/L。此病人应诊断为
属于DR成像直接转换方式的部件是
用直线切割一个有限平面,后一条直线与此前每条直线都要产生新的交点。第1条直线将平面分成2块,第2条直线将平面分成4块,第3条直线将平面分成7块,按此规律将该平面分为22块需:
小麦:馒头
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x)=aF1(x)一bF2(x)是某随机变量的分布函数,在下列给定的各组数值中应取()
请用400字以内文字,分别论述原型法与严格定义法适用的场合。原型生命周期提供了一种用原型法完成需求定义的完整方法。但对于一些特殊情况,如规模较小,完整性要求较弱的应用,可以采取灵活的做法以适应实际目标。请用300字以内文字,说明改变原型生命周期约束的
最新回复
(
0
)