首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
admin
2018-12-21
50
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ﹢η=(1,2,-3)
T
﹢ (2,-1,1)
T
,其中k为任意常数.证明:
(I)方程组(α
1
,α
2
)x=β有唯一解,并求该解;
(Ⅱ)方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x-β有无穷多解,并求其通解.
选项
答案
由题设条件(α
1
,α
2
,α
3
)x=β有通解k(1,2,-3)
T
﹢(2,-1,1)
T
,知 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=2, (*) α
1
﹢2α
2
-3α
3
=0, (**) β=(k﹢22)α
1
﹢(2k-1)α
2
﹢(-3k﹢1)α
3
. (***) (I)由(**)式得α
3
[*]1(α
1
﹢2α
2
),知α
1
,α
2
线性无关(若α
1
,α
2
线性相关,又α
3
=[*](α
1
﹢2α
2
),得r(α
1
,α
2
,α
3
)=1,这和(*)式矛盾).由(*)式知α
1
,α
2
是向量组α
1
,α
2
,α
3
及α
1
,α
2
,α
3
,β的极大线性无关组,从而有r(α
1
1,α
2
)=r(α
1
,α
2
,β)=2,方程组(α
1
,α
2
)x=β有唯一解. 由(***)式取α
3
的系数-3k﹢1=0,即取 [*],即(α
1
,α
2
)x=β的唯一解为[*] (Ⅱ)因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
,β)=2,故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
,其中ξ
1
,ξ
2
为对应的齐次方程组的基础解系,η
*
为方程组的特解,k
1
,k
2
为任意常数. 由(**)式 α
1
﹢2α
2
-3α
3
=(α
1
,α
2
,α
3
)[*]=0. 得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 在(***)式中取k=0,有 2α
1
-α
2
﹢α
3
=(α
1
,α
2
,α
3
)[*]=β, 则得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 观察得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β的通解为 k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
=k
1
ξ
1
﹢k
2
(η
1
-η
2
)﹢η
1
=k
1
(0,1,2,-3)
T
﹢k
2
(-1,3,0,2)
T
﹢(0,2,-1,1)
T
, 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/j8j4777K
0
考研数学二
相关试题推荐
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(2015年)设矩阵A=,且A3=O(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
(1998年)设(2E-C-1B)AT/C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
(2006年)微分方程y′=的通解是_______.
(2005年)设区域D={(χ,y)|χ2+y2≤4,χ≥0,y≥0},f(χ)为D上的正值连续函数,a、b为常数,则
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
(1992年)求曲线y=的一条切线l,使该曲线与切线l及直线χ=0,χ=2所围成平面图形面积最小.
(2014年)设函数f(χ)=,χ∈[0,1].定义函数列:f1(χ)=f(χ),f2(χ)=f(f1(χ)),…,fn(χ)=f(fn-1(χ)),…记Sn是由曲线y=fn(χ),直线χ=1及χ轴所围成平面图形的面积,求极限nSn.
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
随机试题
撰写公文时应当尽量使用()
国际咨询工程师联合会(FIDIC)成立于()。
股票的内在价值是每股股票所代表的实际资产价值。()
委托加工的物资收回后用于连续生产的,应将受托方代收代缴的消费税计入委托加工物资的成本。()
某有限责任公司注册资本为人民币8000万元,净资产为人民币1亿元,该公司变更为股份有限公司时,根据公司法律制度的规定,折合的实收股本总额不得高于()。(1999年)
一般情况下,在证券主板市场上某只股票的市盈率越低,表明其投资价值越低;反之,则结论相反。
在一个大学生宿舍有3个同学,她们的名字是:小梅、小红和小利。一个学英语,一个学法语,一个学德语:一个来自北京,一个来自上海,一个来自重庆。来自北京的不是学英语的。小红不学法语。小利来自上海。来自重庆的学法语。由此可知()。
非学历民办学校:指国家机构以外的社会组织和个人利用非国家财政性经费,面向社会举办不具备颁发学历文凭资格的培训、进修、专修学院(学校、中心)。根据上述定义,下列不属于非学历民办学校的一项是( )。
Aparadoxofeducationisthatpresentinginformationinawaythatlookseasytolearnoftenhastheoppositeeffect.Numerous
A)Toawriter,self-publishingisanincrediblypowerfulandalluringconcept.Onthesimplestlevel,it’sanintriguingsoluti
最新回复
(
0
)