首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢ (2,-1,1)T,其中k为任意常数.证明: (I)方程组(α1,α2)x=β有唯一解,并求该解; (Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
admin
2018-12-21
53
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ﹢η=(1,2,-3)
T
﹢ (2,-1,1)
T
,其中k为任意常数.证明:
(I)方程组(α
1
,α
2
)x=β有唯一解,并求该解;
(Ⅱ)方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x-β有无穷多解,并求其通解.
选项
答案
由题设条件(α
1
,α
2
,α
3
)x=β有通解k(1,2,-3)
T
﹢(2,-1,1)
T
,知 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=2, (*) α
1
﹢2α
2
-3α
3
=0, (**) β=(k﹢22)α
1
﹢(2k-1)α
2
﹢(-3k﹢1)α
3
. (***) (I)由(**)式得α
3
[*]1(α
1
﹢2α
2
),知α
1
,α
2
线性无关(若α
1
,α
2
线性相关,又α
3
=[*](α
1
﹢2α
2
),得r(α
1
,α
2
,α
3
)=1,这和(*)式矛盾).由(*)式知α
1
,α
2
是向量组α
1
,α
2
,α
3
及α
1
,α
2
,α
3
,β的极大线性无关组,从而有r(α
1
1,α
2
)=r(α
1
,α
2
,β)=2,方程组(α
1
,α
2
)x=β有唯一解. 由(***)式取α
3
的系数-3k﹢1=0,即取 [*],即(α
1
,α
2
)x=β的唯一解为[*] (Ⅱ)因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)=r(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
,β)=2,故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
,其中ξ
1
,ξ
2
为对应的齐次方程组的基础解系,η
*
为方程组的特解,k
1
,k
2
为任意常数. 由(**)式 α
1
﹢2α
2
-3α
3
=(α
1
,α
2
,α
3
)[*]=0. 得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 在(***)式中取k=0,有 2α
1
-α
2
﹢α
3
=(α
1
,α
2
,α
3
)[*]=β, 则得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 观察得(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)[*] 故方程组(α
1
﹢α
2
﹢α
3
﹢β,α
1
,α
2
,α
3
)x=β的通解为 k
1
ξ
1
﹢k
2
ξ
2
﹢η
*
=k
1
ξ
1
﹢k
2
(η
1
-η
2
)﹢η
1
=k
1
(0,1,2,-3)
T
﹢k
2
(-1,3,0,2)
T
﹢(0,2,-1,1)
T
, 其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/j8j4777K
0
考研数学二
相关试题推荐
(2003年)设an=,则极限nan等于【】
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
(2008年)曲线sin(χy)+ln(y-χ)=χ在点(0,1)处的切线方程是_______.
(2006年)设函数g(χ)可微,h(χ)=e1+g(χ),h′(1)=1,g′(1)=2,则g(1)等于【】
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=y(χ)为曲边的曲边梯形面积记为S2,并设2S1-S
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
交换累次积分I的积分次序:I=.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)