首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2018-05-25
86
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)-φ
2
(x),φ
2
(x)-φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
x
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/jIW4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设二维随机变量(X,Y)在区域D={(x,y)|1≤x≤e2,0≤y≤}上服从均匀分布,则(X,Y)的关于X的边缘概率密度Fx(x)在点x=e处的值为________.
设总体X和Y相互独立,且分别服从正态分布N(0,4)和N(0,7),X1,X2,…,X8和Y1,Y2,…,Y14分别来自总体X和Y的简单随机样本,则统计量的数学期望和方差分别为________.
已知X具有概率密度求未知参数α的矩估计和最大似然估计.
已知线性方程组(Ⅰ)线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设f(x)=,求f(x)的间断点,并判断其类型.
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
求下列函数的一阶导数:y=x(sinx)cosx
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明存在x0∈使得F’’(x0)=0.
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
随机试题
滴定终点与反应的化学计量点不吻合是由指示剂选择不当所造成的。()
关于期间的计算,下列哪一选项是正确的?
()是土地权属调查的关键。
监督检查人员受理违法用地和违法建设案件后首先要弄清楚的问题不包括()。
银行业从业人员的下列行为中,()不符合“岗位职责”有关规定。
旅游服务集体的任务是()。
王老师是一位青年教师,工作热情非常高,他对学生的要求十分严格,经常要求学生不要讲脏话,不要乱扔废纸……而这位教师讲课情急时,常常“笨猪”“脑子”不绝于耳;吸烟后,随手将烟蒂抛在课桌下面……这样教育后的班级会怎样呢?虽然王老师没少用嘴皮子,没少用各种惩罚手段
有人把世界看作是从来如此、始终不变的自然界,人不过是从属于自然的一部分。这种观点属于()。
胁迫、诱骗或教唆不满18周岁的人违反治安管理的,( )处罚。
Technologiescollapsethedistancebetweenadesireanditsfulfillmentbyreducingeitherthetimeortheeffortinvolved.
最新回复
(
0
)