首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2018-05-25
44
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)-φ
2
(x),φ
2
(x)-φ
3
(x)为方程y’’+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y’’+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
x
(x)
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://kaotiyun.com/show/jIW4777K
0
考研数学三
相关试题推荐
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
已知α1=[a,1,1]T是矩阵A=的逆矩阵的特征向量,那么a=________.
已知随机变量X1与X2的概率分布,而且P{X1X2=0}=1.(1)求X1与X2的联合分布;(2)问X1与X2是否独立?为什么?
设矩阵A=,且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[1,-1,1]T,求a,b,c及λ0的值.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)一2f’(ξ)=0.
由方程sinxy+ln(y一x)=x确定函数y=y(x),求
设f(x)∈C[1,+∞),广义积分∫1+∞f(x)dx收敛,且满足f(x)=则f(x)=________.
设为发散的正项级数,令Sn=a1+a2+…+an(n=1,2,…).证明:收敛.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设数列{xn}由递推公式(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
随机试题
经验估计预测法。根据市场预测主体的不同,经验估计预测法又分为________、________和________3种。
肾小球滤过率与下列哪项因素无关
甲从丁销售中心购买了一发动机,该发动机为乙厂所生产,但产品上贴上丙公司的商标,因发动机存在制造缺陷,为此引起纠纷,依据产品责任,下列表述正确的是:()
进行独立型投资方案经济效果评价时,认为方案在经济上可行、能够通过绝对经济效果检验的条件是()。
通风与空调工程竣工验收中的观感质量检查包括()。
关于国内生产总值增长情况的表述中,()是正确的。
在用落体法验证机械能守恒定律时,某同学按照正确的操作选的纸带如图。其中O是起始点,A、B、C是打点计时器连续打下的3个点。该同学用毫米刻度尺测量O到A、B、C各点的距离,并记录在图中(单位cm)。①这三个数据中不符合有效数字读数要求的是_______,应
根据下列材料回答问题。2010年,我国共投入研究与试验发展(R&D,以下简称R&D)经费7062.6亿元,比上年增长21.7%;R&D经费投入强度(与国内生产总值之比)为1.76%,比上年的1.70%有所提高。分活动类型看,全国用于基础研
“以合法的形式掩盖非法目的的民事行为无效”这一规则是()。
电子邮件通常采用的传输协议是 ( )
最新回复
(
0
)