首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是( ).
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是( ).
admin
2021-07-27
59
问题
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式
①PA=B;
②P
-1
ABP=BA;
③P
-1
AP=B;
④P
T
A
2
P=B
2
成立的个数是( ).
选项
A、1
B、2
C、3
D、4
答案
C
解析
逐个分析关系式是否成立.
①式成立.因为A,B均是n阶可逆矩阵,故存在可逆矩阵Q,W,使QA=E,WB=E(可逆矩阵可通过初等行变换化为单位矩阵),故有QA=WB,W
-1
QA=B.记W
-1
Q=P,则有PA=B成立,故①式成立.
②式成立.因为A,B均是n阶可逆矩阵,可取P=A,则有A
-1
(AB)A=(A
-1
A)BA=BA,故②式成立.
③式不成立.因为A,B均是n阶实对称矩阵,它们均可以相似于对角矩阵,但不一定相似于同一个对角矩阵,即A,B不一定相似.对任意可逆矩阵P,均有P
-1
AP=P
-1
EP=E≠B,故③式不成立.
④式成立.因为A,B均是实对称可逆矩阵,其特征值均不为零,A
2
,B
2
的特征值均大于零.故A
2
,B
2
的正惯性指数为n(秩为n,负惯性指数为0),故A
2
合同于B
2
,即存在可逆矩阵P,使得P
T
A
2
P=B
2
,故④式成立.由以上分析,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/jQy4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设A为n阶可逆矩阵,A*是A的伴随矩阵,则
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
n阶矩阵A和B具有相同的特征值是A和B相似的()
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一10x22.(1)在广告
n元实二次型正定的充分必要条件是()
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
二次型f(x1,x2,x3)=x12+5x22+x32一4x1x2+2x2x3的标准形可以是()
随机试题
一般说来,涉外合同的效力依当事人协议选择的法律作为准据法,但“意思自治”原则也受到一些限制。根据我国《合同法》第126条和《民法通则》第145条的规定,一方面,我国将意思自治原则作为确定涉外合同准据法的首要原则,另一方面又规定了中外合资经营企业合同、中外合
社会主义农村建设的中心环节是()
上颌连模铸造中腭杆通常应位于
风湿性心脏病二尖瓣狭窄随右心衰竭加重,下列哪项表现会减轻()
能够同时测出角度和距离的仪器是()。
应付账款是指企业因购买材料、商品和存入保证金等形成的应付给供应单位的款项。()
下列外商投资企业中,享受“五免五减半”优惠有()。
在双链表中p所指的结点之前插入一个结点q的操作为()。
A、B、C、D、D
Thephrase"theword"inthefirstlineofthepassagerefersto______.Whatpercentageoftheearth’swatercanmanactually
最新回复
(
0
)