首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是( ).
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是( ).
admin
2021-07-27
31
问题
设A,B是n阶实对称可逆矩阵,则存在n阶可逆矩阵P,使得下列关系式
①PA=B;
②P
-1
ABP=BA;
③P
-1
AP=B;
④P
T
A
2
P=B
2
成立的个数是( ).
选项
A、1
B、2
C、3
D、4
答案
C
解析
逐个分析关系式是否成立.
①式成立.因为A,B均是n阶可逆矩阵,故存在可逆矩阵Q,W,使QA=E,WB=E(可逆矩阵可通过初等行变换化为单位矩阵),故有QA=WB,W
-1
QA=B.记W
-1
Q=P,则有PA=B成立,故①式成立.
②式成立.因为A,B均是n阶可逆矩阵,可取P=A,则有A
-1
(AB)A=(A
-1
A)BA=BA,故②式成立.
③式不成立.因为A,B均是n阶实对称矩阵,它们均可以相似于对角矩阵,但不一定相似于同一个对角矩阵,即A,B不一定相似.对任意可逆矩阵P,均有P
-1
AP=P
-1
EP=E≠B,故③式不成立.
④式成立.因为A,B均是实对称可逆矩阵,其特征值均不为零,A
2
,B
2
的特征值均大于零.故A
2
,B
2
的正惯性指数为n(秩为n,负惯性指数为0),故A
2
合同于B
2
,即存在可逆矩阵P,使得P
T
A
2
P=B
2
,故④式成立.由以上分析,故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/jQy4777K
0
考研数学二
相关试题推荐
设A为n阶可逆矩阵,A*是A的伴随矩阵,则
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
设A为m×n矩阵,且r(A)=m,则()
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
下列矩阵中不能相似于对角阵的矩阵是
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设向量组α1,α2,α3,α4线性无关,则向量组().
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
设二次型f(x1,x2,x3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型(1)2y12+2y22.(2)2y12.(3)2y12+2y32.(4)2y22+2y32.中可用正交变换化为f的是().
随机试题
分光光度计控制波长纯度的元件是()。
A.持续高流量面罩吸氧B.持续低流量鼻导管吸氧C.气管插管、机械通气D.高压氧舱E.无创正压通气COPD、肺性脑病和昏迷应选择
用纳氏试剂比色法测定水中氨氮,在测定前对一些干扰需做相应的预处理,在下列常见物质中:①KI;②CO2;③色度;④Fe3+;⑤氢氧化物;⑥硫化物;⑦硫酸根;⑧醛;⑨酮;⑩浊度,以下哪组是干扰项?()
投标人少于()的,出让人应当按照规定重新招标。
账务处理系统中,凭证审核人员不能修改其他人录入的凭证。()
CPPI是一种通过比较投资组合现时净值与投资组合价值底线,从而动态调整投资组合中()与保本资产的比例,以兼顾保本与增值目标的保本策略。
下列有价证券中,属于货币证券的有()。
请认真阅读下列篇目,并按要求作答。日月潭日月潭是我国台湾省最大的一个湖。它在台中附近的高山上。那里群山环绕,树木茂盛,周围有许多名胜古迹。日月潭很深,湖水碧绿。湖中央有个美丽的小岛,叫光化岛。小岛把湖水分成两半,北边像圆圆的太阳,叫日
[*]
GregLogan:Thesewerethetrialsforthe1988OlympicsinSeoul,Korea.Untilthisdive,Ihadbeenahead.Butnow,somethi
最新回复
(
0
)