首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(1,1,-1)T是矩阵A=的一个特征向量,则
设向量α=(1,1,-1)T是矩阵A=的一个特征向量,则
admin
2016-01-23
33
问题
设向量α=(1,1,-1)
T
是矩阵A=
的一个特征向量,则
选项
A、矩阵A能相似对角化,且秩r(A)=3
B、矩阵A不能相似对角化,且秩r(A)=3
C、矩阵A能相似对角化,且秩r(A)<3
D、矩阵A不能相似对角化,且秩r(A)<3
答案
A
解析
本题考查方阵的相似对角化问题.要先根据题设条件求出参数a,b的值,进而求出A的全部特征值,看有无重根,再判定.
解:设α=(1,1,-1)
T
是矩阵A的属于特征值λ的特征向量,则有Aα=λα,即
解得λ=-1,a=2,b=0,于是A=
,显然r(A)=3,且A的特征值为λ
1
=λ
2
=2,λ
3
=-1.矩阵A能否相似对角化取决于λ
1
=λ
2
=2是否有两个线性无关的特征向量.由r(λ
1
E-A)=r
=1.可知二重特征值λ=2有两个线性无关的特征向量,故A可相似对角化.
转载请注明原文地址:https://kaotiyun.com/show/jRw4777K
0
考研数学一
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设α1,α2,α3,…,αn为n个n维向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,α3,…,αn线性表示。
设A=(α1,α2,α3,…,αm),其中α1,α2,α3,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,k3,…,km,皆有k1α1+k2α2+k3α3+...+kmαm≠0,则()。
设f(x)二阶可导,f(0)=f(1)=0且.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
一质点从时间t=0开始做直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零,证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
计算二重积分,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域。
设函数f(x,y,z)一节连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z)证明:
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x).
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
随机试题
Amongallthemalignancies,lungcanceristhebiggestkiller;morethan100,000Americansdieofthedisease.Givingupsmoking
不孕症伴有痛经,常常发生于()
A.强心苷B.利多卡因C.苯妥英钠D.维拉帕米E.硝苯地平
女,32岁,肿物脱出阴道外9月。妇科检查:宫颈脱出阴道口外5cm,余无异常
A.煎煮法B.浸渍法C.渗漉法D.双提法E.水蒸气蒸馏法冠心丹参片中丹参的提取采用()
甲将头痛粉冒充海洛因欺骗乙,让乙出卖“海洛因”,然后二人均分所得款项。乙出卖后获款4000元,但在未来得及分赃时,被公安机关查获。关于本案,下列哪些说法是正确的?()
美国著名心理学家马斯洛在“需求层次论”中,将人类生活需求分成五个层次,下述()不属于该五个层次中的内容。
对综合理财服务的理解,下列说法错误的是()。
下列选项中,不属于手臂骨骼的是()。
虐待罪,是指对共同生活的家庭成员经常以打骂、捆绑、冻饿、限制自由、凌辱人格、不给治病或者强迫过度劳动等方法,从肉体上和精神上进行摧残迫害,情节恶劣的行为。根据定义,下列不构成虐待罪的是()。
最新回复
(
0
)