首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求齐次线性方程组的通解,并将其基础解系单位正交化。
求齐次线性方程组的通解,并将其基础解系单位正交化。
admin
2019-03-23
53
问题
求齐次线性方程组
的通解,并将其基础解系单位正交化。
选项
答案
取x
3
,x
4
为自由未知量,则方程组的基础解系为α
1
=(1,0,1,0)
T
,α
2
=(—1,1,0,1)
T
,所以该齐次线性方程组的通解为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为任意常数。 对α
1
,α
2
进行施密特正交化,令 β
1
=α
1
=(1,0,1,0)
T
, β
2
=α
2
—[*]=(—1,1,0,1)
T
—[*](1,0,1,0)
T
=[*](—1,2,1,2)
T
, 单位化得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jTV4777K
0
考研数学二
相关试题推荐
要建一个圆柱形无盖水池,使其容积为V0m3.底的单位面积造价是周围的两倍,问底半径r与高h各是多少,才能使水池造价最低?
求函数y=的单调区间,极值点,凹凸性区间与拐点.
证明函数f(x)=在(0,+∞)单调下降.
设z=(x2+y2),求dz与
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设A是m×n实矩阵,r(A)=n,证明ATA是正定矩阵.
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为m×N矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则
随机试题
想象
________,水多菰米岸莓苔。
关于骨骼的MRI特性,正确的是
患者女性,16岁,诊为系统性红斑狼疮,超声心动图检查提示二尖瓣后叶多发细小赘生物,心脏听诊未闻及杂音,首先考虑
瘢痕性类天疱疮在口腔中病损的最常见部位是
硫酸镁中毒时最早出现的是
如果一个瓶内的东西可以被安全地喝下,那么这个瓶子就不会被标为“毒品”,所以,既然一个瓶子没被标为“毒品”,那么它里面的东西就可以被安全地喝下。以下除了哪项外,都犯了与上述论证同样的错误?
What’swrongwiththeman?
A、 B、 C、 D、 D
PASSAGEFOURWhatcanthesuccessofGooglebeascribedtoaccordingtothefirstparagraph?
最新回复
(
0
)