首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.
已知3阶矩阵A与3维列向量α,若α,Aα,A2α线性无关,且A3α=3Aα-2A2α,试求矩阵A的特征值与特征向量.
admin
2018-06-12
84
问题
已知3阶矩阵A与3维列向量α,若α,Aα,A
2
α线性无关,且A
3
α=3Aα-2A
2
α,试求矩阵A的特征值与特征向量.
选项
答案
由于A
3
α+2A
2
α-3Aα=0,有 A(A
2
α+2Aα-3α)=0=0(A
2
α+2Aα-3α). 因为α,Aα,A
2
α线性无关,故必有A
2
α+2Aα-3α≠0.所以λ=0是A的特征值,而k
1
(A
2
α+2Aα-3α)(k
1
≠0)是矩阵A属于特征值λ=0的特征向量. 类似地,A
3
α+2A
2
α-3Aα=0,有 (A-E)(A
2
α+3Aα)=0=0(A
2
α+3Aα), (A+3E)(A
2
α-Aα)=0=0(A
2
α-Aα). 所以,λ=1是A的特征值,而k
2
(A
2
α+3Aα)(k
2
≠0)是属λ=1的特征向量;λ=-3是A的特征值,而k
3
(A
2
α-Aα)(k
3
≠0)是属于λ=-3的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/jUg4777K
0
考研数学一
相关试题推荐
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=∧.
已知A=,B是3阶非零矩阵,且BAT=O,则a=_______.
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设4元齐次线性方程组(1)为而已知另一4元齐次线性方程组(2)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.(1)求方程组(1)的一个基础解系;(2)当a为何值时,方程组(1)与
四元方程组Aχ=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3(2,3,4,5)T,如果r(a)=3,则方程组Aχ=b的通解是_______.
曲线y=的拐点的个数为
设事件A出现的概率为p=0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A出现的次数在450到550次之间的概率a.
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
确定常数a和b的值,使f(x)=x-(a+6ex2)sinx当x→0时是x的5阶无穷小量.
回答下列问题设A,X均是2阶方阵,E是2阶单位阵,证明矩阵方程AX一XA=E无解.
随机试题
实验中常用枸橼酸钠抗凝血,其机制是
牙间刷牙签
最常见的一种心律失常是
计量要求原则是会计一般原则的一种,计量要求原则包括()。
背景某办公楼工程,建筑面积5500m2,框架结构,独立柱基础,上设承台梁,独立柱基础埋深为1.5m,地质勘察报告中地基基础持力层为中砂层,基础施工钢材由建设单位供应。基础工程施工分为两个施工流水段,组织流水施工,根据工期要求编制了工程基础项目的施
电算化方式下,所有凭证类型均采用统一的凭证格式。()
阅读下面的文字,按要求作文。古罗马哲人赛涅卡说,人的生命如同寓言,不在于长短,而在于内容,有内容的生命自然是精彩的。生物学家达尔文说,自然界中包括人类在内的各种生命的存在本身就是一种精彩。对此,你又是如何看的呢?请以“精彩的生命”为标题
王式廓的作品()取材于我国土地革命时期的情景。
(厦门大学2011年初试真题)某典当行2010年6月销售死当物品取得销售收入32万元,取得咨询收入15万元,手续费收入10万元。该拍卖行应纳营业税()万元。
Whentravelerslackanawarenessof【51】timeisregulatedinaforeigncountry,theycanexpecttofeelsomewhatdisoriented.Sin
最新回复
(
0
)