首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
admin
2016-05-09
72
问题
设4元齐次线性方程组(1)为
而已知另一4元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
(1)求方程组(1)的一个基础解系;
(2)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零公共解.
选项
答案
(1)对方程组(1)的系数矩阵作初等行变换,有 [*] 由于n-r(A)=4-2=2,基础解系由2个线性无关的解向量所构成,取χ
3
,χ
4
为自由变量,得β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系. (2)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数. 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组(3) [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠-1时,则(3)[*]那么方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意. 当a=-1时,方程组(3)同解变形为[*]解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
.于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
. 所以当a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/mMw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2,求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
曲线L:(0≤t≤2π)的弧长为________
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设向量组试问:当a,b,c满足什么条件时(1)β可由a1,a2,a3线性表出,且表示法唯一;(2)β可由a1,a2,a3线性表出,但表示法不唯一,并求出一般表达式.(3)β不能由a1,a2,a3线性表出;
设f(x),g(x)为连续可微函数,且w=yf(xy)dx+xg(xy)dy.若存在u使得du=w,求f-g的值;
斜边长为2a的等腰直角三角形平板,铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g,水密度为ρ,则该平板一侧所受的水的压力为________.
(2009年试题,23)设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2……Xn是来自总体X的简单随机样本.求参数λ的最大似然估计量.
随机试题
菲利普斯曲线
争名利,何年是彻。彻:
A.浸渍法B.渗漉法C.煎煮法D.回流法E.沙氏或索氏提取法
研究城市土地利用空间分布结构时,将城镇分为()。
计算机的数据输出设备主要有()、打印机、绘图仪等。
甲上市公司拟非公开发行股票,其发行方案的下列内容中,符合证券法律制度规定的是()。(2011年)
突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。为妥善处理突发事件,国家建立统一领导、综合协调、分类管理、分级负责、()管理为主的应急管理体制。
(2017·福建)“小明既聪明又勤奋”,该评价涉及的心理现象是()
《根特协定》
Notes:parade游行TheVillageofPouceCoupeofficewillreopenon________.
最新回复
(
0
)