首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
设4元齐次线性方程组(1)为 而已知另一4元齐次线性方程组(2)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. (1)求方程组(1)的一个基础解系; (2)当a为何值时,方程组(1)与
admin
2016-05-09
75
问题
设4元齐次线性方程组(1)为
而已知另一4元齐次线性方程组(2)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
(1)求方程组(1)的一个基础解系;
(2)当a为何值时,方程组(1)与(2)有非零公共解?若有,求出所有非零公共解.
选项
答案
(1)对方程组(1)的系数矩阵作初等行变换,有 [*] 由于n-r(A)=4-2=2,基础解系由2个线性无关的解向量所构成,取χ
3
,χ
4
为自由变量,得β
1
=(5,-3,1,0)
T
,β
2
=(-3,2,0,1)
T
是方程组(1)的基础解系. (2)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数. 由k
1
β
1
+k
2
β
2
-l
1
α
1
-l
2
α
2
=0,得齐次方程组(3) [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠-1时,则(3)[*]那么方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意. 当a=-1时,方程组(3)同解变形为[*]解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
.于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
. 所以当a=-1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,-1,1,1)
T
+l
2
(-1,2,4,7)
T
,l
1
,l
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/mMw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2,求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
计算极限.
讨论函数f(x)=(x>0)在定义域内的连续性.
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
函数f(x)=∫xx+π/2|cost|dt在[0,π]上的最小值与最大值分别为()
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________
求微分方程满足初始条件y(1)=0的特解.
设线性方程组(Ⅰ)(Ⅱ)(1)求线性方程组(Ⅰ)的通解;(2)m,n取何值时,方程组(Ⅰ)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(Ⅰ)与(Ⅱ)同解.
设u=u(x,y,z)是由方程ex+u-xy-yz-zu=0确定的可微函数,求du的值.
随机试题
在焊接结构中采用最多的一种接头形式为()接头。
万某因出国留学将自己的独资企业委托陈某管理,并授权陈某在5万元以内的开支和50万元以内的交易可自行决定。设若第三人对此授权不知情,则陈某受托期间实施的下列()行为为我国法律所禁止或无效。
关于现金持有量与各成本的关系,下列说法正确的是()。
下列有关管理人的表述中,正确的有()。
一般来说,学校中的教学媒体包括非投影视觉辅助、__辅助和__辅助。
0261220()
()对于蓝牙耳机相当于电话对于()
一项研究显示,某些病原体可能演化出对女性造成的疾病严重程度和致死率低于男性的特性。除了可以通过和男性一样的方式将病原体传递给其他人群外,女性还可以在怀孕、生产和哺乳期将病原体传递给子女。研究显示,女性较男性额外拥有的病原体传播机会可能对病原体产生充分的演化
将来、日本へ留学する________、日本語を習っています。
IntheUnitedStates,thereissomedisagreement(tosaytheleast)overtherisksandbenefits.ofnuclearpower.Therecanbe
最新回复
(
0
)