首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=∧.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q-1AQ=∧.
admin
2016-05-09
68
问题
已知矩阵A=
有特征值λ=5,求a的值;并当a>0时,求正交矩阵Q,使Q
-1
AQ=∧.
选项
答案
因人=5是矩阵A的特征值,则由 |5E-A|=[*]=3(4-a
2
)=0, 可得a=±2. 当a=2时,则由矩阵A的特征多项式 |λE-A|=[*]=(λ-2)(λ-5)(λ-1), 知矩阵A的特征值是1,2,5. ’ 由(E-A)χ=0得基础解系α
1
=(0,1,-1)
T
; 由(2E-A)χ=0得基础解系α
2
=(1,0,0)
T
; 由(5E-A)χ=0得基础解系α
3
=(0,1,1)
T
. 即矩阵A属于特征值1,2,5的特征向量分别是α
1
,α
2
,α
3
. 由于实对称矩阵不同特征值的特征。向量相互正交,故只需单位化,有 [*] 那么, 令Q=(γ
1
,γ
2
,γ
3
)=[*],则有Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tgw4777K
0
考研数学一
相关试题推荐
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
A是n阶矩阵,且A3=0,则().
已知|A|==9,则代数余子式A21+A22=
设f(χ)=在χ=0处连续,则f(χ)在χ=0处().
n维向量组(Ⅰ):α1,α2,…,αs和(Ⅱ):β1,β2,…,βt等价的充分必要条件是
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:存在一点ξ∈(0,1),使得f’’(ξ)=0
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
设D是由曲线与直线y=-x所围成的区域,D1是D在第二象限的部分,则(xsiny+ycosx)dxdy=().
随机试题
与鉴别脑膜炎奈瑟茵和淋病奈瑟茵有关的试验是
混凝土拌和系统废水宜进行()。
办理个人住房贷款,贷前咨询的内容包括()。
王某依照《公司法》设立了一人有限责任公司。公司存续期间,王某实施的下列行为中,违反了《公司法》规定的是()。
在教育心理学的发展史中,教育学与心理学背离的时期是()
40年改革开放极大改变了中国的面貌、中华民族的面貌、中国人民的面貌、中国共产党的面貌。我们迎来的伟大飞跃有:
有一商家为了推销其家用电脑和网络服务,目前正在大力开展网络消费的广告宣传和推广促销。经过一定的市场分析,他们认为手机用户群是潜在的网络消费用户群,于是决定在各种手机零售场所宣传、推销他们的产品。结果两个月下来,效果很不理想。以下哪项如果为真,最有助于解释出
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
下列选项中不属于Java虚拟机的执行特点的是( )。
下列叙述中正确的是
最新回复
(
0
)