首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
admin
2017-06-26
29
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:由必要性假定,对ε
j
=(0,…,0,1,0,…,0)
T
(第j个分量为1,其余分量均为零),方程组Aχ=ε
j
有解c
j
,即Ac
j
=ε
j
(j=1,2,…,m),故有[Ac
1
Ac
2
… Ac
m
]=[ε
1
ε
2
… ε
m
]=E
m
,记矩阵c=[c
1
c
2
… c
m
],则有Ac=E
m
,故有m=r(E
m
)=r(Ac)≤r(A)≤m,[*]r(A)=m;充分性:若r(A)=m,则A的行向量组线性无关,故增广矩阵[*]的行向量组也线性无关,[*]=m,由有解判定定理知方程组Aχ=b有解,其中b为任意m维列向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/jjH4777K
0
考研数学三
相关试题推荐
曲线在点(0,1)处的法线方程为_________.
设函数f(x)连续,F(u,v)=,其中区域Duv为图中阴影部分,则=().
如下图,连续函数y=f(x)在区间[-3,-2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
设a0=1,a1=7/2,an+1=-(1+(1/n+1))an,n≥2,证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设f(x)在区间[0,1]上可微,且满足条件f(1)=2∫01/2xf(x)dx,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:条件概率P{Y=yj|X=x1},j=1,2.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
求微分方程y"+y’一2y=xex+sin2x的通解.
差分方程的通解为______.
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
随机试题
镇肝熄风汤中重用怀牛膝的主要用意()(1996年第46题)
()对于福建相当于()对于江苏
Ifyouareworriedaboutthingsandareunderalotofstressatworkorschool,thenyouareprobablynotsleepingwell.Worry
肝外分泌的物质是
随着配送中心数量的增加,配送中心与顾客间的距离就会缩短,配送成本和运输成本因此而减少。()
参加工作后,你的直接领导给了你一个工作安排,一个你的非直接领导也给了你一个工作安排,而第二个工作安排更为可行,你该怎么办?
看了《中华读书报》中《看法》栏目中的一篇读者来信《丰一吟的襟怀》,不禁引起我对新月还是残月讨论的兴趣。我从小就喜欢读丰子恺先生的书与画,觉得虽然不是轰轰烈烈,但总有一股雅趣渗透于其中。“人散后,一钩新月天如水”这幅画我也看过,也很喜欢。虽然丰先生画的是残月
YouarerequiredtowriteanessayonthetopicWhichModeofTravelDoYouLike?Youshouldwritenolessthan200wordsandba
软件设计包括四个既独立又相互联系的活动,分别为(1)、(2)、数据设计和过程设计。
NoticetoretailersOwingtoproductiondelaysandunexpecteddemand,weregretthatproductNo.AS/524Bisoutofstock.
最新回复
(
0
)