首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
admin
2017-06-26
51
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:由必要性假定,对ε
j
=(0,…,0,1,0,…,0)
T
(第j个分量为1,其余分量均为零),方程组Aχ=ε
j
有解c
j
,即Ac
j
=ε
j
(j=1,2,…,m),故有[Ac
1
Ac
2
… Ac
m
]=[ε
1
ε
2
… ε
m
]=E
m
,记矩阵c=[c
1
c
2
… c
m
],则有Ac=E
m
,故有m=r(E
m
)=r(Ac)≤r(A)≤m,[*]r(A)=m;充分性:若r(A)=m,则A的行向量组线性无关,故增广矩阵[*]的行向量组也线性无关,[*]=m,由有解判定定理知方程组Aχ=b有解,其中b为任意m维列向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/jjH4777K
0
考研数学三
相关试题推荐
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设试验的成功率P=20%,现在将试验独立地重复进行100次,则试验成功的次数介于16次和32次之间的概率α=____________.(φ(1)=0.8413,φ(3)=0.9987)
向量组α1,α2,…,αm线性无关的充分必要条件是().
已知f(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=e/n,求函数项级数fn(x)之和.
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
设随机变量x的概率密度函数为f(x)=,以Y表示对X进行三次独立重复观察中事件{X≤1/2)出现的次数,则P{Y=2}=________.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则().
A,B是n阶方阵,则下列公式正确的是()
设f(x)有连续的导数,f(0)=0,fˊ(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当x→0时,Fˊ(x)与xk是同阶无穷小,则k等于()
随机试题
ADSL可以与普通电话共用一条电话线,并能为用户提供固定的数据传输速率。()
龋病流行的人群分布因素中包括
根据个人所得税法律制度的规定.下列各项中纳税人应当按照规定到主管税务机关办理纳税申报的有()。
为了解全国煤炭企业的生产安全状况,找出安全隐患,专家根据经验选择10个有代表性的企业进行深入细致的调查。这类调查方法属于()。
教育事业发展的规模和速度从根本上制约于一定社会的()。
小王乘坐匀速行驶的公交车,和人行道上与公交车相对而行、匀速行走的小李相遇,30秒后公交车到站,小王立即下车与小李同一方向匀速快步行走。已知他行走的速度比小李的速度快一倍但比公交车的速度慢一半,则他多久之后追上小李?()
所谓宽容乃是说已成势力对于新兴流派的态度,正如壮年人的听任青年的活动。其重要的根据,在于活动变化是生命的本质,无论流派怎么不同,但其发展个性注重创造,同是人生的文学的方向,现象上或是反抗,在全体上实是继续,所以应该宽容,听其自由发育。关于“宽容”,这段话没
直接经验和间接经验的区别在于( )。
若f’’(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
设向量组α1,α2,α3,α4线性无关,则向量组().
最新回复
(
0
)