首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
admin
2019-05-10
34
问题
设A=E一ξξ
T
,其中E是n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.证明:当ξ
T
ξ=1时,A是不可逆矩阵.
选项
答案
证明时由条件ξ
T
ξ=1自然想到要利用结论,这时用反证法最简.注意到A=E一ξξ
T
≠E.如果A可逆,则得到A=E的矛盾. 证一 当ξ
T
ξ=1时,由(1)有A
2
=A.如果A可逆,则A
-1
A
2
=A
-1
A,即A=E.这与A≠E矛盾,故A不可逆. 证二 因A=E-ξξ
T
,故Aξ=ξ一ξξ
T
ξ.当ξ
T
ξ=1时,有Aξ=0.由于ξ≠0,AX=0有非零解.由命题2.1.2.6知∣A∣=0,A不可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/jjV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ∫χbf(y)dy=[∫abf(χ)dχ]2.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从χ轴上(χ0,0)处发射一枚导弹向飞机飞去(χ0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
随机试题
下列给定程序中,函数fun的功能是:在形参ss所指字符串数组中查找与形参t所指字符串相同的串,找到后返回该串在字符串数组中的位置(即下标值),若未找到则返回-1。ss所指字符串数组中共有N个内容不同的字符串,且串长小于M。请在下画线处填入正确的内
2014年年末,某省公路里程172167千米,同比增长2.8%,其中,高速公路4237千米,同比增长3.3%。国家铁路正线延展里程和营业里程分别为15060千米和9351千米,分别同比增长-0.28%和0.23%。地方铁路正线延展里程和营业里程分别为180
我国发展对外经济关系的基础是()
患者男,45岁,左眼翼状胬肉行单纯胬肉切除术后4个月,原胬肉切除区再次形成新生血管结缔组织,并且侵入角膜约4mm,此时再次手术最合适的治疗方案是
构成影响精神疾病的因素包括
某患者涂抹某化妆品后5~7天,再次涂抹时局部出现红肿、水疱、大疱,病变边界不清,自觉瘙痒并有灼热感。诊断可能为
根据齿向,平面齿轮传动可分为外啮合、内啮合及( )。
你所在检验检疫局要在某社区开展一次食品安全宣传活动,在活动期间还会为社区居民提供蔬菜质量的免费检测。如果领导让你负责,你会怎么做?
党的十七大报告指出,十一届三中全会以来,中国共产党坚持马克思主义思想路线。不断探索和回答的重大理论和实际问题是()
A、1000.B、100.C、200.D、2000.D男士说他曾经有过另外一个工作是士兵,女士问他是什么时候,他说是两千年前,而且恺撒很明显是2000年以前的人物,所以选D。
最新回复
(
0
)