首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
admin
2019-05-10
22
问题
设A=E一ξξ
T
,其中E是n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.证明:当ξ
T
ξ=1时,A是不可逆矩阵.
选项
答案
证明时由条件ξ
T
ξ=1自然想到要利用结论,这时用反证法最简.注意到A=E一ξξ
T
≠E.如果A可逆,则得到A=E的矛盾. 证一 当ξ
T
ξ=1时,由(1)有A
2
=A.如果A可逆,则A
-1
A
2
=A
-1
A,即A=E.这与A≠E矛盾,故A不可逆. 证二 因A=E-ξξ
T
,故Aξ=ξ一ξξ
T
ξ.当ξ
T
ξ=1时,有Aξ=0.由于ξ≠0,AX=0有非零解.由命题2.1.2.6知∣A∣=0,A不可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/jjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f〞(χ)-f(χ)=0在(0,1)内有根.
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从χ轴上(χ0,0)处发射一枚导弹向飞机飞去(χ0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
设A为m×n阶矩阵,且r(A)=m<n,则().
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
n阶矩阵A满足A2-2A-3E=O,证明A能相似对用化.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
随机试题
A、氯丙嗪B、维生素CC、庆大霉素D、氯霉素E、维生素K3哪种药物易引起新生儿高胆红素症
声像图伪像是指超声显示的断层图像与其相应解剖断面图像之间存在的差异。表现在回声信息与实际解剖结构不符,即回声的
A.病毒性肝炎B.原发性肝癌C.肝硬化D.壶腹部肿瘤E.肝脓肿患者无痛性黄疸,尿中胆红素阳性,尿胆原阴性,最可能的诊断是()
疗疮走黄的主要病理是
“人得自由,而必以他人之自由为界。”这告诫我们,在政治生活中要坚持()。
下列各项中,不属于实质性行政违法内容的是()。
下列选项中属于国务院职能范围的是()。
6,21,43,72,()
Youareagraduatestudent,andyouareinterestedinthepositionofbusinessmanagerthatisadvertisedonthenewspaper.Writ
下列关于RPR技术的描述中,正确的是()。
最新回复
(
0
)