首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,九)已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且F(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的
(2000年试题,九)已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且F(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的
admin
2019-06-09
56
问题
(2000年试题,九)已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且F(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
题设要求的是切线方程,因此只需知道切点坐标及该点处切线斜率即可,由已知f(x)是周期为5的连续函数,因而求f
’
(6)及f(6)就等价于求f
’
(1)及f(1),由关系式[*]再根据导数的定义,有[*]其中f(1)可由下述步骤确定:在原关系式中令x→0并结合f(x)的连续性可得f(1)一3f(1)=0,即f(1)=0,则由[*][*]=f
’
(1)+3f
’
(1)=4f
’
(1)因此f
’
(1)=2,由周期性知f
’
(6)=.f
’
(1)=2,f(6)=f(1)=0,所以待求切线方程为y=2(x一6),即2x一y—12=0[评注]由于只知道f(x)连续,且在x=1处可导,所以其在x=6处的导数不能直接套用公式f
’
(x+T)=f
’
(x),而得由导数的定义求得.
解析
转载请注明原文地址:https://kaotiyun.com/show/yYV4777K
0
考研数学二
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在ξ∈(0,1),使得f(ξ)=1一ξ;
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx。(Ⅱ)计算∫02πdx。
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
设函数z=f(x,y)(xy≠0)满足f(xy,)=y2(x2一1),则dz=________。
求极限。
设f(x)在[0,+∞]连续,且=0。证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0。
求微分方程y’’(x+y’2)=y’满足初始条件y(1)=y’(1)=1的特解。
椭球面S1是椭圆=1绕x轴旋转一周而成,圆锥面S2是过点(4,0)且与椭圆=1相切的直线绕x轴旋转一周而成。求S1与S2之间的立体体积。
已知二次型f(x1,x2,x3=4x22一3x32+4x1x2—4x1x3+8x2x3。写出二次型f的矩阵表达式;
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的()
随机试题
下列哪些权利要求的撰写不符合相关规定?
中药性状是指( )。
(2007年考试真题)下列各项,不会引起所有者权益总额发生增减变动的有()。
《中华人民共和国国民经济和社会发展第十三个五年规划纲要》指出,要深入贯彻习近平总书记系列重要讲话精神,坚持“四个全面”战略布局,坚持(),牢固树立和贯彻落实创新、协调、绿色、开放、共享的发展理念。
信息不会像传统的资源那样日趋减少,而是越使用、越消费越多,取之不尽,用之不尽,用之不竭;信息也和人口爆炸迥然不同,只有出生没有死亡。这意味着( )
行宪国大(复旦大学1999年中国近现代史真题)
()、物流成本决策、物流成本控制在物流成本管理活动中是互相配合、相互依存的一个有机整体。
对于系统中的独占设备,为预防出现死锁。应采用的最佳分配策略是()。
Mary______thatpieceofcakefortwentyyuan.
A、Crowdedhouses.B、Pollutedwaterfromfactories.C、Highcrimerate.D、Continualnoise.D文中列举了城市生活的四大不利之处:hous-ing,pollution,hi
最新回复
(
0
)