首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
admin
2019-05-08
43
问题
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为
问X与Y是否相互独立?
选项
答案
解一 设X,Y的分布函数分别为F
X
(x),F
Y
(y),则 [*] 故当x≥0,y≥0时,有 F
X
(x)F
Y
(y)=(1-e
-0.5x
)(1-e
-0.5y
)=1-e
-0.5x
-e
-0.5y
+e
-0.5(x+y)
=F(x,y). 而当x>0或y<0时,有 F
x
(x)F
Y
(y)=0=F(x,y), 所以对任意x,y,均有F(x,y)=F
x
(x)F
Y
(y),则X与Y独立. 解二 先求出(X,Y)的联合概率密度函数f(x,y)及边缘密度f
X
(x),f
Y
(y).当x≥0,y≥0时,有 [*] 于是有 [*] 因而[*]同理,可求得[*] 易验证对x≥0,y≥0,均有 f(x,y)=f
X
(x)f
Y
(y). 对x<0或y<0,也有f(x,y)=f
X
(x)·f
Y
(y)=0,故对任意x,y均有f(x,y)=f
X
(x)f
Y
(y),由命题3.3.5.1(1)知,X与Y相互独立. 注:命题3.3.5.1 (1)对任意二维随机变量(X,Y),有X,Y相互独立[*]对任意x,y,有F(x,y)=F
X
(x)F
Y
(y);X,Y相互独立[*]对任意x,y,有f(x,y)=f
X
(x)f
Y
(y).
解析
转载请注明原文地址:https://kaotiyun.com/show/joJ4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(x,y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(y)(z)。
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是()
已知P(A)=0.5,P(B)=0.7,则(Ⅰ)在怎样的条件下,P(AB)取得最大值?最大值是多少?(Ⅱ)在怎样的条件下,P(AB)取得最小值?最小值是多少?
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系。(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设X在区间[-2,2]上服从均匀分布,令Y=求:(1)Y,Z的联合分布律;(2)D(Y+Z).
直角坐标中的累次积分I=f(x,y)dy化为极坐标先r后θ次序的累次积分I=___________.
求下列导数:
(2009年)使不等式>lnx成立的x的范围是()
随机试题
根据我国《选举法》的规定,有关“由选民直接选举的人大代表候选人提名推荐方式”中,不正确的是()。
油田经济评价步骤包括核定基础数据和计算参数等内容。()
企业基期的销售收入利润率为30%,计划期的销售收入利润率与基期的相同,预计企业的销售收入为7000万元,则企业计划期内的利润额为()
A.C1~3B.C4C.C5D.C6E.C7支配头运动肌的是
填隙碎石适用于()。
对下肢骨牵引患者的护理,错误的是()。
课外活动最基本的组织形式是()
下列选项中,符合所给图形的变化规律的是()。
根据以下资料,回答问题。2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如图所示:部分国家国际储备和黄金储备的变化情况如下表所示:假设黄金价格为500美元/盎司,那么表中各年黄
(259)的软件是系统软件。
最新回复
(
0
)