首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为 问X与Y是否相互独立?
admin
2019-05-08
39
问题
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为
问X与Y是否相互独立?
选项
答案
解一 设X,Y的分布函数分别为F
X
(x),F
Y
(y),则 [*] 故当x≥0,y≥0时,有 F
X
(x)F
Y
(y)=(1-e
-0.5x
)(1-e
-0.5y
)=1-e
-0.5x
-e
-0.5y
+e
-0.5(x+y)
=F(x,y). 而当x>0或y<0时,有 F
x
(x)F
Y
(y)=0=F(x,y), 所以对任意x,y,均有F(x,y)=F
x
(x)F
Y
(y),则X与Y独立. 解二 先求出(X,Y)的联合概率密度函数f(x,y)及边缘密度f
X
(x),f
Y
(y).当x≥0,y≥0时,有 [*] 于是有 [*] 因而[*]同理,可求得[*] 易验证对x≥0,y≥0,均有 f(x,y)=f
X
(x)f
Y
(y). 对x<0或y<0,也有f(x,y)=f
X
(x)·f
Y
(y)=0,故对任意x,y均有f(x,y)=f
X
(x)f
Y
(y),由命题3.3.5.1(1)知,X与Y相互独立. 注:命题3.3.5.1 (1)对任意二维随机变量(X,Y),有X,Y相互独立[*]对任意x,y,有F(x,y)=F
X
(x)F
Y
(y);X,Y相互独立[*]对任意x,y,有f(x,y)=f
X
(x)f
Y
(y).
解析
转载请注明原文地址:https://kaotiyun.com/show/joJ4777K
0
考研数学三
相关试题推荐
设级数都发散,则().
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设总体X服从参数为p的几何分布,如果取得样本观测值为x1,x2,…,xn,求参数p的矩估计值与最大似然估计值。
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2)),其中σ是未知参数且σ>0,设Z=X一Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修。设开机后第1次停机时已生产了的产品个数为x,求x的数学期望E(X)和方差D(X)。
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系。(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设处处可导,确定常数a,b,并求f′(x).
设x∈(0,1),证明不等式x<ln(1+x)+arctanx<2x.
随机试题
母猴带着小猴爬树也是教育。
______couldbejudgedfromhiseyes,hefeltterriblysorryforwhathehaddone.
Hefailedthetestmanytimes.______,hedidn’tstoptrying.
患者,男性,28岁,右颈上部淋巴结结核,下列何种药物对此患者治疗无效
债务人应当自收到支付令之日起15日内向债权人清偿债务,或者向人民法院提出口头异议。()
市场经济以市场作为资源配置的基础性手段,但它并不排斥国家对经济的宏观调控。()
已知一等差数列a1,21,a3,31,…,an,……,若ann=516,则该数列前n项的平均数是()。
根据决策过程的启发法,试论述如何成功推广一款定位于中高端的新饮料。(南京大学2017研)
Onlytwocountriesintheadvancedworldprovidenoguaranteeforpaidleavefromworktocareforanewbornchild.Lastspring
下列叙述中正确的是
最新回复
(
0
)