首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向量
设四维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向量
admin
2021-01-25
62
问题
设四维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出。
选项
答案
记以α
1
,α
2
,α
3
,α
4
为列向量的矩阵为A,则 |A|=[*]=a
3
(10+a)。 于是当|A|=0,即a=0或a=一10时,α
1
,α
2
,α
3
,α
4
线性相关。 0时,显然α
1
是一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
; 当a=一10时,矩阵A如下: [*] 由于此时A有三阶非零行列式,即 [*] 所以α
1
,α
2
,α
3
为极大线性无关组,且α
1
+α
2
+α
3
+α
4
=0,即α
4
=一α
1
-α
2
-α
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jwx4777K
0
考研数学三
相关试题推荐
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设总体X的概率密度为其中θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
利用变换y=f(ex)求微分方程y"-(2ex+1)y’+e2xy=e3x的通解.
求方程y’’+2my’+n2y=0满足初始条件y(0)=a,y’(0)=b的特解,其中m>n>0,a,b为常数,并求
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1).(1)求X的数学期望EX(记EX为b);(2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b的置
[2005年]设二维随机变量(X,Y)的概率密度为求(X,Y)的边缘概率密度fX(x),fY(y);
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求二维随机变量(X,Y)的概率分布;
设A,B均为n阶矩阵,且AB=A+B,下列命题:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A-E恒可逆.则以上命题正确的有()个.
[2004年]设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系().
随机试题
Inthe1960s,manyyoungAmericansweredissatisfiedwithAmericansociety.TheywantedtoendtheVietnamWarandtomakeallo
上腹饱胀感,B超示肝内液性暗区见于AFP600μg/L,B超示左肝内3cm×5cm占位见于
以下哪项应用甘露醇减低脑水肿的认识是不正确的
投标单位应按招标单位提供的工程量清单,注意填写单价和合价。在开标后发现有的分项投标单位没有填写单价或合价,则()
一般说来,资本化率的确定要考虑()。
WWW网是()的简称。
某建设项目需购置甲、乙两种生产设备,设备甲基期购置数量3台,单价2万元;报告期购置数量2台,单价2.5万元,设备乙基期购置数量2台,单价4万元;报告期购置数量3台,单价4.5万元。该建设项目设备价格指数为()。
在下列选项中,不属于银监会的监管职责的是()
社会主义市场体系是由()构成的。
认真阅读下列关于计算机网络防火墙的说明信息,回答问题1~5。将答案填入对应的解答栏内。[说明]某单位的内部局域网通过防火墙与外部网络的连接方式及相关的网络参数如下图所示。如果使外部所有主机不能访问内部IP地址为192.168.0.10的
最新回复
(
0
)