首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2017-06-08
92
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故A不正确.
对于B,取α
4
=-α
1
,即知B不对.
对于D,可考察向量组(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),可知D不对.
至于C,因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/k0t4777K
0
考研数学二
相关试题推荐
设f(u)连续,则d2/dx2∫0xdu∫u1vf(u2-v2)dv=________.
π2/16
(e-1)/2
证明:[*]
证明:当x≥5时,2x>x2.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
随机试题
车尔尼雪夫斯基认为“形象在美的领域中占着统治地位”,这说明【】
在市场经济条件下,公路运输的组织形式不包括()
PowerPoint2010中,可以单击_____________选项卡“幻灯片”组中的“新建幻灯片”按钮,添加新幻灯片。
∫-aaf(x)dx=∫0af(x)dx+p,则p=()
大黄牡丹汤中配伍大黄的主要目的是
结肠CT扫描的适应证不包括
男性患者,37岁,以“颜面及躯干皮疹伴双手遇冷发凉、变紫1年,加重伴发热1周”来诊。治疗上错误的是
有关青春期后女孩生殖器官发育哪项正确
按照税负差异理论,在进行个税股利决策的税收策划时,股份制企业应该选择的方式是()。
随着车辆的迅速增加,道路更加拥挤不堪,交通事故也在明显上升。因此,道路拥挤是事故明显上升的主要原因。最能支持上述论断的是:
最新回复
(
0
)