首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
admin
2017-06-08
77
问题
设α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列说法正确的是
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
+α
3
,α
2
+α
4
也线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
+α
4
,α
2
+α
4
,α
3
+α
4
线性无关.
C、若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
D、若α
1
,α
2
,α
3
,α
4
中任意三个向量均线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
答案
C
解析
若α
1
=(1,0),α
2
=(2,0),α
3
=(0,2),α
4
=(0,3),则α
1
,α
2
线性相关,α
3
,α
4
线性相关,但α
1
+α
3
=(1,2),α
2
+α
4
=(2,3)线性无关.故A不正确.
对于B,取α
4
=-α
1
,即知B不对.
对于D,可考察向量组(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),可知D不对.
至于C,因为4个3维向量必线性相关,如若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出.现在α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关.故应选C.
转载请注明原文地址:https://kaotiyun.com/show/k0t4777K
0
考研数学二
相关试题推荐
[*]
8π
设f(u)连续,则d2/dx2∫0xdu∫u1vf(u2-v2)dv=________.
[*]
A、∫0πdθ∫02acosθf(rcosθ,rsinθ)rdrB、∫0πdθ∫02asinθf(rcosθ,rsinθ)rdrC、∫-π/2π/2dθ∫02acosθf(rcosθ,rsinθ)rdrD、∫-π/2π/2dθ∫02asinθf(rc
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
随机试题
下面对耳部CT扫描技术的描述正确的是
陈某是贩毒者,他在2001年中在全国各地多次流窜贩毒,并伙同他人组成贩毒集团。公安机关将其抓获后,在检察机作关作出逮捕决定前,最多可以将陈某拘留多少天:
与综合吊装法相比,采用分件吊装法的优点是()。【2006年真题】
【背景资料】某装饰公司承接了寒冷地区某商场的室内、外装饰工程。其中,室内地面采用地面砖镶贴,吊顶工程部分采用木龙骨,室外部分墙面为铝板幕墙,采用进口硅酮结构密封胶、铝塑复合板,其余外墙为加气混凝土外镶贴陶瓷砖。施工过程中,发生如下事件:
()既属内陆交货又属象征性交货的术语。
中央银行资产负债表项目中,储备货币包括()。
根据《行政诉讼法》的规定,对提起行政诉讼的下列事项中,人民法院依法不予受理的包括()。
如今大城市的房屋中介市场十分发达,尤其是租房市场在各种限购令出台之后更是十分火爆,但租房者经常有由于房屋到期而没有租住新房需要匆忙搬家的情况发生。某房产中介公司总经理称,现在的租房合同签订得十分严格,合同中明确写明了中介公司需要在房屋租期到期之前30天联系
[A]Theresearcherscalculatedthedifferentwaterfootprintsofthreedifferentdietsforeachregion:1.thecurrentdietint
Extrovertsandintrovertsusuallyperformdifferentlyintheirsociallives.Extrovertsgetenergizedbybeingaroundpeople,
最新回复
(
0
)