首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
admin
2021-01-31
84
问题
设随机变量X的概率密度为
f(x)=a/(e
x
+e
-x
)(一∞<x<+∞),
对X作两次独立观察,没两次的观察值为X
1
,X
2
,令
。
(Ⅰ)求常数a及P{X
1
<0,X
2
>1};
(1I)求(Y
1
,Y
2
)的联合分布。
选项
答案
(Ⅰ)由[*],得a=π/2。 因为X
1
,X
2
相互独立,所以P{X
1
<0,X
2
>1}=P{X
1
<0}P{X
2
>1}, 注意到f(x)为偶函数,所以P{X
1
<0}=1/2,于是 [*] (Ⅱ)(Y
1
,Y
2
)可能的取值为(0,0),(0,1),(1,0),(1,1) P{Y
1
=0,Y
2
=0}=P{X
1
>1,X
1
>1}=P{X
1
>1}P{X
2
>1}=[1-(2/π)arctane]
2
, P{Y
1
=0,Y
2
=1}=P{X
1
≤1,X
2
>1}=P{X
1
≤1}P{X
2
>1} =(2/π)arctane[1-(2/π)arctane]=P{Y
1
=1,Y
2
=0}, P{Y
1
=1,Y
2
=1}=P{X
1
≤1,X
2
≤1}=P{X
1
≤1}P{X
2
≤1}=(4/π
2
)arctan
2
e。
解析
转载请注明原文地址:https://kaotiyun.com/show/k4x4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=—1}=p,P{X=1}=1—p,(0<p<1),令Z=XY.X与Z是否相互独立?
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=—1}=p,P{X=1}=1—p,(0<p<1),令Z=XY.p为何值时,X与Y不相关?
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=—1}=p,P{X=1}=1—p,(0<p<1),令Z=XY.求Z的概率密度.
(90年)已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
[2005年]设为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.计算PTDP,其中
[2015年]设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止.记Y为观测次数.求E(Y).
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
(16年)设函数f(χ)=∫01|t2-χ2|dt(χ>0),求f′(χ),并求f(χ)的最小值.
已知级数与广义积分e(p-2)xdx均收敛,则p的取值范围是_________.
设a为常数,则级数【】
随机试题
下列属于我国民族自治地区的有()
痫病痰火壅实,大便干结者,可选用()(2007年第159题)
椎动脉型颈椎病患者牵引时一般应该采用
某男,50岁。腹泻2年,晨起即腹痛,泻后痛减,腹冷喜暖,精神疲乏,腰酸腿软,四肢发冷,舌淡,苔白,脉沉细。治疗除神阙、天枢、足三里、公孙外,应加用()
大黄为常用中药之一,系蓼科多年生草本植物掌叶大黄、唐古特大黄或药用大黄的干燥根及根茎。现代药理研究表明,大黄具有泻下、抗菌、抗肿瘤、利胆保肝、利尿、止血等作用。大黄中含有的主要化学成分是()。
某发电厂的220kV配电装置出线挂线高度为15m,拟在配电装置外侧四周装设h=35m的等高避雷针作为防雷保护措施。按有关公式计算出各避雷针外侧在被保护物高度的保护半径和任何两支避雷针之间的最大距离。装设四支避雷针,整个配电装置即能得到保护。除按边界条件
下列有关现代生物进化理论的叙述,错误的是()。
消费者从某商品中得到的享受,会随着该商品消费的增加()。
在市场经济体制下,资源的配置通过以下哪些机制来实现?()
Athiefdroppedawinninglotteryticket(彩票)atthesceneofhiscrime,buthehasbeengivenalessonin【C1】______.Themanwh
最新回复
(
0
)