首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
admin
2021-01-31
54
问题
设随机变量X的概率密度为
f(x)=a/(e
x
+e
-x
)(一∞<x<+∞),
对X作两次独立观察,没两次的观察值为X
1
,X
2
,令
。
(Ⅰ)求常数a及P{X
1
<0,X
2
>1};
(1I)求(Y
1
,Y
2
)的联合分布。
选项
答案
(Ⅰ)由[*],得a=π/2。 因为X
1
,X
2
相互独立,所以P{X
1
<0,X
2
>1}=P{X
1
<0}P{X
2
>1}, 注意到f(x)为偶函数,所以P{X
1
<0}=1/2,于是 [*] (Ⅱ)(Y
1
,Y
2
)可能的取值为(0,0),(0,1),(1,0),(1,1) P{Y
1
=0,Y
2
=0}=P{X
1
>1,X
1
>1}=P{X
1
>1}P{X
2
>1}=[1-(2/π)arctane]
2
, P{Y
1
=0,Y
2
=1}=P{X
1
≤1,X
2
>1}=P{X
1
≤1}P{X
2
>1} =(2/π)arctane[1-(2/π)arctane]=P{Y
1
=1,Y
2
=0}, P{Y
1
=1,Y
2
=1}=P{X
1
≤1,X
2
≤1}=P{X
1
≤1}P{X
2
≤1}=(4/π
2
)arctan
2
e。
解析
转载请注明原文地址:https://kaotiyun.com/show/k4x4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=—1}=p,P{X=1}=1—p,(0<p<1),令Z=XY.X与Z是否相互独立?
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij(i,j=1,2,…,n)的代数余子式,二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二
(07年)设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fz(z).
[2001年]设A为n阶实对称矩阵,秩(A)=n,Aij是A=[aij]n×n中元素aij的代数余子式.二次型记X=[x1,x2,…,xn]T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
[2014年]设随机变量X的概率分布为P(X=1)=P(X=2)=在给定X=i的条件下,随机变量y服从均匀分布U(0,i),i=1,2.求Y的分布函数;
设a1,a2,a3,是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
若级数在x=-1处收敛,则此级数在x=2处
随机试题
细菌的毒力包括()
胸膜腔()
急性溶血性输血反应指输血后4h内发生的反应。()
选购和使用水银体温计时应
某二级公路土质路堤边坡基本稳定,坡面只有轻微冲刷,最适合于此处的坡面防护措施是()。
中小学校建筑护栏高度、栏杆间距、安装位置要求正确的是()。
阅读《烛之武退秦师》教学实录(节选),回答问题。片段一:师:烛之武如何说服秦伯,课文中用了124个字,老师比他更惜字如金,只用了短短18个字,同学们可要好好看看。(幻灯片显示:莫亡郑也,亡郑有益于晋,不利于秦,望君三思)
在Word2003中,“图片”工具栏中的“颜色”设置不包括()。
下列关于函数模板的定义中,合法的是()。
Mr.Leewouldratherwe_____now,butwemustgotowork.
最新回复
(
0
)