首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
设随机变量X的概率密度为 f(x)=a/(ex+e-x)(一∞<x<+∞), 对X作两次独立观察,没两次的观察值为X1,X2,令 。 (Ⅰ)求常数a及P{X1<0,X2>1}; (1I)求(Y1,Y2)的联合分布。
admin
2021-01-31
122
问题
设随机变量X的概率密度为
f(x)=a/(e
x
+e
-x
)(一∞<x<+∞),
对X作两次独立观察,没两次的观察值为X
1
,X
2
,令
。
(Ⅰ)求常数a及P{X
1
<0,X
2
>1};
(1I)求(Y
1
,Y
2
)的联合分布。
选项
答案
(Ⅰ)由[*],得a=π/2。 因为X
1
,X
2
相互独立,所以P{X
1
<0,X
2
>1}=P{X
1
<0}P{X
2
>1}, 注意到f(x)为偶函数,所以P{X
1
<0}=1/2,于是 [*] (Ⅱ)(Y
1
,Y
2
)可能的取值为(0,0),(0,1),(1,0),(1,1) P{Y
1
=0,Y
2
=0}=P{X
1
>1,X
1
>1}=P{X
1
>1}P{X
2
>1}=[1-(2/π)arctane]
2
, P{Y
1
=0,Y
2
=1}=P{X
1
≤1,X
2
>1}=P{X
1
≤1}P{X
2
>1} =(2/π)arctane[1-(2/π)arctane]=P{Y
1
=1,Y
2
=0}, P{Y
1
=1,Y
2
=1}=P{X
1
≤1,X
2
≤1}=P{X
1
≤1}P{X
2
≤1}=(4/π
2
)arctan
2
e。
解析
转载请注明原文地址:https://kaotiyun.com/show/k4x4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=—1}=p,P{X=1}=1—p,(0<p<1),令Z=XY.求Z的概率密度.
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
[2005年]设为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.利用上题的结果判断矩阵B=CTA-1C是否为正定矩阵,并证明你的结论.
(90年)求级数的收敛域.
[2014年]设随机变量X的概率分布为P(X=1)=P(X=2)=在给定X=i的条件下,随机变量y服从均匀分布U(0,i),i=1,2.求Y的分布函数;
(2016年)设函数f(x)=∫01|t2一x2|dt(x>0),求f’(x),并求f(x)的最小值.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,齐次方程组Ax=0的通解为c(1,0,一3,2)T,证明α2,α3,α4是A*x=0的基础解系.
设函数f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)≠0(xε(0,1)),证明:。
设a为常数,则级数【】
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
随机试题
BrightonisapopularseasidetownonthesouthcoastofEngland.Notlongago,somepolicemenwerevery【21】.There【22】severals
A.白秃癣B.肥疮C.鹅掌风D.脚湿气E.圆癣皮损以发于趾缝间的皮下水泡,趾间浸润糜烂,渗流滋水,角化过度,脱屑为特征,夏重冬轻,属于()
在下列方法中,属于精神分析治疗常用的是
孙某因犯抢劫罪被甲县人民法院判处有期徒刑6年,判决生效后被送至乙县监狱服刑。第二年5月6日,孙某越狱脱逃。孙某的同监犯人张某向监狱告发:孙某跟他说过其在丙县强奸一女青年,经查属实。孙某越狱后在丁县抢劫某饭店过程中被捕获归案。本案最后归哪个法院管辖?(
证券自营业务买卖对象除了上市证券外,还包括非上市证券。( )
企业法人的内部单位均不得申请开立基本存款账户。()
简述语言的特征。
求
Hemusthavecomehereyesterdayevening,______he?
A、Heshouldoftendosunbathing.B、Heshouldoftentakehotbaths.C、Heshouldwarmhimselfupbysittingbythestove.D、Hesho
最新回复
(
0
)