首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 则 ( )
admin
2019-02-23
76
问题
齐次线性方程组的系数矩阵A
4×5
=[β
1
,β
2
,β
3
,β
4
,β
5
]经过初等行变换化成阶梯形矩阵为
则 ( )
选项
A、β
1
不能由β
3
,β
4
,β
5
线性表出
B、β
2
不能由β
1
,β
3
,β
5
线性表出
C、β
3
不能由β
1
,β
2
,β
5
线性表出
D、β
4
不能由β
1
,β
2
,β
3
线性表出
答案
D
解析
β
i
能否由其他向量线性表出,只须将β
i
视为是非齐次方程的右端自由项(无论它原在什么位置)有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β
4
不能由β
1
,β
2
,β
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/k904777K
0
考研数学一
相关试题推荐
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.求先抽到的一份报名表是女生表的概率p;
设矩阵为A*对应的特征向量.判断A可否对角化.
设方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
设D是由曲线=1(a>0,b>0)与x轴,y轴围成的区域,求
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且,求。
设在区间[e,e2]上,数p,q满足条件px+q≥Inx,求使得积分I(p,q)=(px+q-lnx)dx取得最小值的p,q的值.
设随机变量X在[0,2]上服从均匀分布,Y服从参数λ=2的指数分布,且X,Y相互独立.(Ⅰ)求关于A的方程a2+Xa+Y=0有实根的概率(答案可用符号表示,不必计算出具体值).(Ⅱ)求P|X+2Y≤3}.
随机从数集{1,2,3,4,5}中有返回的取出n个数X1,X2,…,Xn,则当n→∞时Xi依概率收敛于__________;依概率收敛于__________.
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是
随机试题
女性,40岁,连续行走时两侧臀腿痛,需间歇性下蹲休息2年。开始能连续行走半小时,随后间歇期逐渐缩短,现在行走200m就出现症状,平卧时无症状。查体腰椎4~5间隙压痛,无放射,直腿抬高左右均达70°,两下肢感觉、肌力均正常。根据该患者的症状体征,腰4椎体
抗抑郁药不包括
某猪场,部分4月龄育肥猪突然发病,呼吸急迫,体温41℃;腹下及四肢皮肤呈紫红色,有出血点。濒死前口鼻中流出暗红色血液。血液涂片染色镜检,可见大量革兰氏阳性菌。该病可初步诊断为
支饮是指饮邪留于()
甲对乙享有60万元债权,丙、丁分别与甲签订保证合同,但未约定保证责任的范围和方式。戊以价值30万元的房屋为乙向甲设定抵押并办理了登记。下列关于丙、丁、戊关系的表述何者正确?()
担保物权是以直接支配特定财产的()为内容,以确保债权实现为目的而设的物权。
事业单位的下列税费中,应在“应缴税费”科目核算的有()。
在美国的“次贷危机”中,很多依靠从银行借人次级贷款来购买住房的人,到期不能还本付息。这种情形对于发放次级贷款的银行而言,属于该银行承受的()。
以下名塔中属于楼阁式塔的有()。
下列选项中,表述错误的是()。
最新回复
(
0
)