首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
admin
2019-03-23
41
问题
设α
1
,α
2
,…,α
n
是n个n维的线性无关向量组,α
n+1
=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,其中k
1
,k
2
,…,k
n
全不为零。证明α
1
,α
2
,…,α
n
,α
n+1
中任意n个向量线性无关。
选项
答案
选取α
i
之外的n个向量为例。 令λ
1
α
1
+…+λ
i—1
α
i—1
+λ
i+1
α
i+1
+…+λ
n
α
n
+λ
n+1
α
n+1
=0,即(λ
1
+λ
n+1
k
1
)α
1
+…+(λ
i—1
+λ
n+1
k
i—1
)α
i—1
+λ
n+1
k
i
α
i
+(λ
i+1
+λ
n+1
k
i+1
)α
i+1
+…+(λ
n
+λ
n+1
k
n
)α
n
=0。 因为α
1
,α
2
,…,α
n
线性无关,所以必有λ
n+1
k
i
=0,而k
i
≠0,则λ
n+1
=0,故由λ
1
+λ
n+1
k
1
=0,…,λ
i—1
+λ
n+1
k
i—1
=0,λ
i+1
+λ
n+1
k
i+1
=0,…,λ
n
+λ
n+1
k
n
=0,立即得λ
1
=λ
2
=…=λ
i—1
=λ
i+1
=…=λ
n+1
=0,所以α
1
,α
2
,…,α
i—1
,α
i+1
,…,α
n
,α
n+1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/kHV4777K
0
考研数学二
相关试题推荐
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
考虑二次型,问λ取何值时,f为正定二次型?
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
随机试题
简述公司集团的主要作用。
A.支气管哮喘B.支气管扩张C.慢性支气管炎、肺气肿D.支气管肺癌E.特发性肺间质纤维化局限性哮鸣音
患儿用药导致第八对颅神经损害,造成听力减退,或永久性耳聋,最大可能是应用了哪类药物
患者,男性,65岁,主因咳嗽、咳痰10年,加重伴痰中带血4个月入院。吸烟30余年,20支/d。查体:右肺呼吸音粗,散在细湿啰音。有慢性支气管炎病史10年,无高血压、糖尿病病史患者经过治疗后,支气管胸膜瘘痊愈。术后病理:右肺上叶尖后段不规则形低分化腺癌,
A.促甲状腺素B.绒促性素C.破伤风人免疫球蛋白D.结合雌激素E.重组人促红素在运输中应冷库贮存并避免冻结的药品是
某运转设备的安装水平度允许偏差为纵向0—10,/1000、横向0.20,/1000,测量人员可选用的水平仪精度有()。
在儿童早期,附属内驱力最为突出;到儿童后期和少年期,_________就成为一个强有力的动机因素。
对违法犯罪分子的改造工作,是教育人、挽救人和防止重新犯罪的特殊预防工作。()
Iwouldn’tmarryPatevenifshe______thelastwomanonearth.
AncientGreekphilosopherAristotleviewedlaughteras"abodilyexerciseprecioustohealth."But【B1】______someclaimstothe
最新回复
(
0
)