首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
设α1,α2,…,αn是n个n维的线性无关向量组,αn+1=k1α1+k2α2+…+knαn,其中k1,k2,…,kn全不为零。证明α1,α2,…,αn,αn+1中任意n个向量线性无关。
admin
2019-03-23
56
问题
设α
1
,α
2
,…,α
n
是n个n维的线性无关向量组,α
n+1
=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,其中k
1
,k
2
,…,k
n
全不为零。证明α
1
,α
2
,…,α
n
,α
n+1
中任意n个向量线性无关。
选项
答案
选取α
i
之外的n个向量为例。 令λ
1
α
1
+…+λ
i—1
α
i—1
+λ
i+1
α
i+1
+…+λ
n
α
n
+λ
n+1
α
n+1
=0,即(λ
1
+λ
n+1
k
1
)α
1
+…+(λ
i—1
+λ
n+1
k
i—1
)α
i—1
+λ
n+1
k
i
α
i
+(λ
i+1
+λ
n+1
k
i+1
)α
i+1
+…+(λ
n
+λ
n+1
k
n
)α
n
=0。 因为α
1
,α
2
,…,α
n
线性无关,所以必有λ
n+1
k
i
=0,而k
i
≠0,则λ
n+1
=0,故由λ
1
+λ
n+1
k
1
=0,…,λ
i—1
+λ
n+1
k
i—1
=0,λ
i+1
+λ
n+1
k
i+1
=0,…,λ
n
+λ
n+1
k
n
=0,立即得λ
1
=λ
2
=…=λ
i—1
=λ
i+1
=…=λ
n+1
=0,所以α
1
,α
2
,…,α
i—1
,α
i+1
,…,α
n
,α
n+1
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/kHV4777K
0
考研数学二
相关试题推荐
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
证明:r(A)=r(ATA).
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=f(x,y)dxdy化成累次积分.
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2化之积成反比,比例系数为k=,求y=y(x).
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=若α0=,
随机试题
Thedeclineinmoralstandards—whichhaslongconcernedsocialanalysts—hasatlastcapturedtheattentionofaverageAmericans.
组织细胞对病毒的易感性取决于
动物进行新陈代谢、生长发育和繁殖分化的形态学基础是()
我国各地区水溶性维生素普遍摄入不足的是
药物经济学与随机临床试验的不同在于
项目影响区域包括( )。
关于公允价值计量,下列说法中正确的有()。
sleepdebt
TheNilemadeEgypt’scivilizationpossible.Theriverismorethan400mileslong.Initsfertilevalleycropsaregrownforfo
PriscillaOuchida’s"energy-efficient"houseturnedouttobeahorribledream.Whensheandherengineerhusbandmarriedafew
最新回复
(
0
)