首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
实α为实的n维非零列向量,E为n阶单位矩阵,证明:矩阵A=E-为对称的正交矩阵.
实α为实的n维非零列向量,E为n阶单位矩阵,证明:矩阵A=E-为对称的正交矩阵.
admin
2018-07-27
49
问题
实α为实的n维非零列向量,E为n阶单位矩阵,证明:矩阵A=E-
为对称的正交矩阵.
选项
答案
记正常数b=2/α
T
α.则A=E-bαα
T
,[*]A
T
=E
T
-b(α
T
)
T
α
T
=E-bαα
T
=A,故A为对称矩阵,又由α
T
α=2/b,得AA
T
=AA=(E-bαα
T
)(E-bαα
T
)=E-bαα
T
-bαα
T
+b
2
α(α
T
α)α
T
=E,故A为正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/wWW4777K
0
考研数学三
相关试题推荐
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断:(Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示;(Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
证明极限不存在.
设4阶矩阵A的秩为2,则r(A*)=_____.
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵A的秩为r,则正确命题是
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
随机试题
班主任工作的中心环节是()。
A.奇脉B.交替脉C.水冲脉D.短绌脉提示房颤
A.只用于术前放疗或术后放疗患者B.只用于单纯放疗或姑息放疗患者C.术后放疗患者D.只用于术前放疗患者E.术前放疗、术后放疗、单纯放疗或姑息放疗患者食道癌前后对穿野用于
A.柴胡疏肝散B.调营饮C.附子理中汤合五苓散D.一贯煎合猪苓汤E.胃苓汤治疗肝硬化脾肾阳虚证,应首选
A、±7.5%B、±5%C、3%D、0.1%~1%E、0.1%~3%中国药典规定片重≥0.3g的片剂的重量差异限度为
化工装置停车后,对设备内可燃物的沉积物,可以用人工铲刮的方法予以清除。清除作业应使用()工具。
基本会计车间使用的固定资产,所计提的折旧应计入制造费用,并最终进入产品的生产成本。()
在期权合约中,()是期权合约中唯一能在交易所内讨价还价的要素,其他合约要素均已标准化。
宏观经济发展的总体目标包括( )。
FormostpeopleBritain’sbouncingeconomy,nowgrowingatitsfastestforthreeyears,iscauseforcheer.Not,【C1】______forth
最新回复
(
0
)