首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
admin
2019-08-01
62
问题
(2001年试题,七)设函数f(x),g(x)满足f
’
(x)=g(x),g
’
(x)=2e
x
一f(x),且f(0)=0,g(0)=2,求
选项
答案
由题设已知[*]此为关于f(x),g(x)的一阶常系数线性方程组,由式(1)两边对x求导,得f
’’
(x)=g
’
(x),将其代入式(2)中,得:f
’
(x)+f(x)=2e
x
此为关于f(x)的二阶常系数线性非齐次方程,先求其齐次方程的通解,由特征方程λ
2
+1=0,可求得特征值为λ
1
=i,λ
2
=一i,因此齐次方程通解为y=C
1
cosx+C
2
sinx,设原方程特解为y
*
=Ae
x
,代入原方程得A=1,从而y
*
=e
x
,所以原方程有通解y=C
1
cosx+C
2
sinx+e
x
又由初始条件f(0)=0及f
’
(0)=g(0)=2,可求出C
1
=一1,C
2
=1,所以f(x)=一cosx+sinx+e
x
,g(x)=cosx+sinx+e
x
下面求定积分[*]
解析
上面计算定积分的过程中,也可先对后一部分进行分部积分,但与上面解法一样,无需将f(x)与g(x)的表达式代入被积函数.
转载请注明原文地址:https://kaotiyun.com/show/kPN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2).证明:
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex.确定常数a,b,c,并求该方程的通解.
求椭圆与椭圆所围成的公共部分的面积.
设(ay-2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=_________.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2.a+2b)T.β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
求数列极限xn,其中xn=
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设Ab=C,证明:(1)如果B是可逆矩阵,则A的列向量和C的列向量组等价.(2)如果A是可逆矩阵,则B的行向量组和C的行向量组等价.
随机试题
NF-1基因突变可引起
A.角膜上皮层B.角膜前弹性层C.角膜基质层D.角膜后弹性层E.角膜内皮层铁质沉着症累及角膜哪一层()
预防地方性甲状腺肿最方便、可靠的措施是
室外电缆沟的防水措施,采用下列哪一项是最重要的?(2003,104)
下列关于法的形式与效力说法错误的是()。
人才管理的主要内容包括()。
1,2,3,7,46,()
我们需要以开放包容的心态“美人之美”,善于发现和吸收外来文化的精华,不________;需要以文化自觉的主体意识“各美其美”,坚守和弘扬优秀中华文化传统,不________、盲目崇外。填入划横线部分最恰当的一项是:
以下是一份统计材料中的两个统计数据:第一个数据:到1999年底为止,“希望之星工程”所收到捐款总额的82%来自国内200家年纯盈利1亿元以上的大中型企业;第二个数据:到1999年底为止,“希望之星工程”所收到捐款总额的25%来自民营企业,这些民营企业中,4
将考生文件夹下STORY文件夹中的文件夹ENGLISH重命名为CHUN。
最新回复
(
0
)