首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( ).
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( ).
admin
2021-07-27
50
问题
设E是n阶单位矩阵,E+A是n阶可逆矩阵,则下列关系式中不恒成立的是( ).
选项
A、(E-A)(E+A)
2
=(E+A)
2
(E-A)
B、(E-A)(E+A)
T
=(E+A)
T
(E-A)
C、(E-A)(E+A)
-1
=(E+A)
-1
(E-A)
D、(E-A)(E+A)
*
=(E+A)
*
(E-A)
答案
B
解析
因EA=AE=A,AA
2
=A
2
A=A
3
,AA
-1
=A
-1
A=E,AA
*
=A
*
A=|A|E,故知A和E,A
2
,A
-1
,A
*
乘法运算均可交换。但(E+A)(E+A)
T
≠(E+A)
T
(E+A).事实上,(E-A)(E+A)
T
=[2E-(E+A)](E+A)
T
≠(E+A)
T
[2E-(E+A)]=(E+A)
T
(E-A).故应选(B).对于(A),(C),(D)均成立。以(C)为例,有(E-A)(E+A)
-1
=[2E-(A+E)](E+A)
-1
=2E(E+A)
-1
-(A+E)(A+E)
-1
=(E+A)
-1
2E-(A+E)
-1
(A+E)=(A+E)
-1
[2E-(A+E)]=(A+E)
2
(E-A).同理,(A),(D)也成立.
转载请注明原文地址:https://kaotiyun.com/show/kTy4777K
0
考研数学二
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
用变量代换χ=sint将方程(1-χ2)-4y=0化为y关于t的方程,并求微分方程的通解.
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
设A为三阶矩阵,,则|4A一(3A*)—1|=()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有()
用待定系数法求微分方程y″一y=xex的一个特解时,特解的形式是()(式中a,b为常数).
随机试题
X62W型铣床的()采用了反接制动的停车方法。
________是实行半总统半议会制决策体制的典型国家;________是实行委员会制的典型国家。
某公司原有资本1000万元,其中债务资本400万元(每年负担利息30万元),普通股资本600万元(发行普通股12万股,每股面值50元),企业所得税税率为30%。由于扩大业务,需追加筹资300万元,其筹资方式有三个:一是全部发行普通股,增发6万股,每股面值5
下列哪项不是婴儿急性上呼吸道感染的并发症()
我国扶植中小企业政策规定:凡符合国家产业政策技术改造项目的国有设备投资,按()比例抵免企业所得税。
马克思在研究战争与和平的关系时指出:“战争比和平发达得早;某些经济关系,如雇佣劳动、机器等等,怎样在战争和军队等等中比在资产阶级社会内部发展得早。生产力和交往关系的关系在军队中也特别显著。”这一论述说明了一个重要观点,即()。
《奥格斯堡和约》
基本以下题干,回答问题在某一演出中,全部独唱演员必须演唱7首歌,每首歌只允许唱1次。歌从1到7连续编号。参加该演出的是一演唱组的3个成员张、刘和王,他们必须遵守以下规则:演唱必须从第1首歌开始,按7首歌的编号连续进行,张和王既可以唱奇数号
HowtoSpeakGoodEnglishI.IntroductionA.Manylearnershavingdifficultyincommunicatingduetothelackof【T1】______andr
Wellknownforher________andtough-mindedmoviecriticism,columnistPaulinealsopossessesanextensiveknowledgeofthetec
最新回复
(
0
)