首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f(0)≠0,f"(0)≠0. 证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f(0)≠0,f"(0)≠0. 证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
115
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f(0)≠0,f"(0)≠0.
证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
[*] 于是λ
1
,λ
2
,λ
3
可以唯一的确定。
解析
转载请注明原文地址:https://kaotiyun.com/show/kV84777K
0
考研数学二
相关试题推荐
f(x)=x4ln(1-x),当n>4时,求f(n)(0).
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=为正定二次型.
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
设函数y=f(x)存在二阶导数,且f’(x)≠0.(I)请用y=f(x)的反函数的一阶导数、二阶导数表示;(Ⅱ)求满足微分方程的x与y所表示的关系式的曲线,它经过点(1,0),且在此点处的切线斜率为,它经过点(1,0),且在此点处的切线斜率为,在此曲线
在下列微分方程中,以y=(c1+χ)e-χ+c2e2χ(c1,c2是任意常数)为通解的是()
设u=u(x,y)由方程组确定,其中φ(v),ψ(v)有连续的二阶导数且yφ"(v)+ψ"(v)≠0,求证:
求极限=_______.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求a的值,使V(a)为最大.
(02年)设0<x1<3,(n=1,2…),证明数列{xn}的极限存在,并求此极限.
(2008年试题,一)设f(x)=x2(x一1)(x一2),则f(x)的零点个数为().
随机试题
“泻南补北”的治法适用于:()
指出处方:硬脂酸甘油酯 35g硬脂酸 120g液状石蜡 60g白凡士林 l0g羊毛脂 50g三乙醇胺 4ml羟苯乙酯 1g水加至 1000g中属于油相成分是
吴某购票进入某公园游玩时,被一歹徒抢走手机及随身携带的手包,损失2000元,并在与歹徒搏斗过程中受伤,花去医药费200元。吴某虽大声喊叫,但没有公园管理处的人员出现。后歹徒逃之夭夭。吴某报案后,诉至法院,请求判决公园赔偿其各项损失,引发纠纷。经查,该公园已
银行业从业人员可以将自己保管的交易密码告知家人。()
立法、行政、司法的“三权分立”思想是由()提出来的。
心理学家戴维斯在实验中,将被试者分为两组学习射箭。甲组受到详细指导:演示如何站立、握弓、放箭;乙组自行尝试,未受严格指导。经18次练习,甲组射中率为65%,乙组射中率为45%。这一实验结果表明,在动作技能的学习过程中()因素很重要。
元曲和唐诗、宋词一样,同为我国古代文学发展史上的艺术高峰。元曲包含两个部分:一是散曲,它是兴起于元代的一种新兴诗歌样式,主要包括小令和套曲;一是杂剧,即由散曲套组成的曲文,间杂以宾白、科介,专供舞台演出。元代散曲与杂剧的产生与发展,有其多种
根据数制的基本概念,下列各进制的整数中,值最小的一个是_______。
AntIntelligenceA)Whenwethinkofintelligentmembersoftheanimalkingdom,thecreaturesthatspringimmediatelytomindare
OneofthemostwidelyabuseddrugsallovertheworldisAlcohol.Whathappenswhenapersondrinkstoomuch?Many【B1】______th
最新回复
(
0
)