首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (1)存在η∈(1/2,1),使f(η)=η; (II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
admin
2012-05-31
36
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(1)存在η∈(1/2,1),使f(η)=η;
(II)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(I)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,[*]由已知条件及(I)中结论,知g(x)也是连续函数,且g(0)=[f(0)-0]e
o
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ∈(0,η),使得gˊ(ξ)=0, 又gˊ(x)=-λe
-λx
[f(x)-x]+e
-λx
[fˊ(x)-1], 所以-λ[f(ξ)-ξ]+fˊ(ξ)-1=0 此即fˊ(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/kpC4777K
0
考研数学二
相关试题推荐
[*]
[*]
证明n阶实对称阵A是正交阵对任一n维列向量α,均有‖Aα‖=‖α‖.
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解,A*是A的伴随矩阵,则有().
设二维随机变量(X,Y)的密度函数为f(x,y)=则X与Y中至少有一个大于的概率为__________________.
求微分方程2y"+y’-Y=(4—6x)e-x满足条件y(0)=0,y’(0)=0的特解y=y(x),并求y=y(x)的单调区间与极值.
函数z=z(x,y)由方程y=xf(z)+φ(y,z)确定,其中f’,φ分别具有连续的导数和偏导数,且xf’+φz’≠0,则=__________。
(2014年)设函数f(u)具有连续导数,z=f(excosy)满足若f(0)=0,求f(u)的表达式.
(14年)设D是由曲线χy+1=0与直线y+χ=0及y=2围成的有界区域,则D的面积为_______.
用某种材料做一个开口长方体容器,其外形长5m,宽4m,高3m,厚0.2m,求所需材料的近似值与精确值.
随机试题
“且有真人而后有真知”中的“真知”来源于()
对先天性甲状腺功能减退症,新生儿筛查测定的项目是( )。【2005年考试真题】
片重差异检查时,所取片数为
在集体发展的几个阶段中,集体真正成为教育手段的阶段是()
科学家们多年前就发现尘土从撒哈拉沙漠向亚马孙流域转移的现象。据估算,每年强风会吹起平均1.82亿吨的尘埃离开撒哈拉沙漠的西部边缘,这些尘埃会向西穿过大西洋,当接近南非沿岸时,空气中大约会保留1.32亿吨的尘埃,大约2800万吨会降落到亚马逊流域。因此,科学
审判员在法院工作,这些人在法院工作,所以这些人是审判员。与上述推理的方式最为相似的是( )。
下列侵犯著作权的行为中,不构成侵犯著作权罪的是()。
Inhernovelof"Reunion,AmericanStyle",RonaJaffesuggeststhataclassreunion"ismorethanasentimentaljourney.Iti
在一项庆祝活动中,一名学生依次为1、2、3号旗座安插彩旗,每个旗座只插一杆彩旗,这名学生有三杆红旗、三杆绿旗和三杆黄旗。安插彩旗必须符合下列条件:如果1号安插红旗,则2号安插黄旗。如果2号安插绿旗,则1号安插绿旗。如果3号安插红旗或者黄旗,则2号安插
设f”(1)存在,且=0,记φ(x)=∫01f’[1+(x-1)t]dt,求φ(x)在x=1的某个邻域内的导数,并讨论φ’(x)在x=1处的连续性。
最新回复
(
0
)