首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2019-01-23
33
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
1
∈(ξ
1
,ξ
2
),使得g’’(ξ
3
)=0成立,这与题设条件g’’(x)≠0矛盾,因此在开区间(a,b)内,g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)-g(x)f’(x),由题设条件得函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即 f(ξ)g’’(ξ)-f’’(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kwM4777K
0
考研数学一
相关试题推荐
计算曲面积分,I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
计算下列三重积分或将三重积分化成累次积分将三重积分f(x,y,z)dV在三种坐标系下化成累次积分,其中Ω是由x2+y2+z2≤R2,x2+y2≤z2,z≥0所围成的区域(如图9.19所示).
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若C=则|C|=
设都是来自正态总体N(μ,σ2)的容量为n的两个相互独立的样本均值,试确定n,使得两个样本均值之差的绝对值超过σ的概率大约为0.01.
设X1,X2,…X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2。服从χ2分布,并求自由度m.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)=0,fn(x)≠0.
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
过曲线y=x2(x≥0)上某点A作一切线,使之与曲线及x轴围成图形面积为,求:(I)切点A的坐标;(II)过切点A的切线方程;(III)由上述图形绕x轴旋转的旋转体的体积.
若极限=A,则函数f(x)在x=a处
求函数Y=(X一1)的单调区间与极值,并求该曲线的渐近线.
随机试题
公文质量在文字表达方面的要求不包括()
Thereasonwhytheychangedtheirmind______tousyet.
患者,女,54岁。突发右下肢动脉栓塞,该栓子最可能来源于
根据我国现行规定,资本公积包括()。
在合同分析中,应明确工程变更的补偿范围,工程变更补偿范围通常以合同金额一定的百分比表示,百分比越大,则()。
证券交易所可以视情况和上市公司的申请予以技术性停牌的情形有()。
一国从国外以每瓶12美元的世界市场价格进口葡萄酒。绘图并说明以下几个问题:如果葡萄酒的消费者集体反对这一限制,而政府无力改变既有的法令,那么政府将选用怎样的替代政策?
资本主义的剥削程度
如果要设置整个报表的格式,应单击相应的______。
TheChoiceMythLastweek,TheWashingtonPostranafront-pagestorythatsaidmoststay-at-homemomsaren’tSUV-driving,d
最新回复
(
0
)