首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在ξ∈(0,3),使f’’(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明: 存在ξ∈(0,3),使f’’(ξ)=0。
admin
2018-12-19
59
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
证明:
存在ξ∈(0,3),使f’’(ξ)=0。
选项
答案
因为f(2)+f(3)=2f(0),即[*]又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0)。 又因为函数在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f’’(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/lNj4777K
0
考研数学二
相关试题推荐
(2002年)设f(χ)=,求函数F(χ)=∫-1χf(t)dt的表达式.
(2001年)设函数f(χ)在[0,+∞)上可导,f(0)=0,且其反函数为g(χ).若∫0f(χ)g(t)dt=χ2eχ求f(χ).
(2010年)计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}.
(2014年)设函数u(χ,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足≠0及=0,则【】
(2007年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
用配方法化下列二次型为标准形:f(x1,x2,x3)=+2x1x2-2x1x3+2x2x3
随机试题
病毒感染常见炎症细胞是()。
下列各句所采用的修辞手法依次是(1)不违农时,谷不可胜食也;数罟不入湾池,鱼鳖不可胜食也;斧斤以时入山林,材木不可胜用也。(2)屋椽子像瘦人的肋骨似的暴露在“光天化日”之下。(3)映阶碧草自春色,隔叶黄鹂空好音。(4)昨宵今
肝硬化食管静脉曲张破裂大出血休克时,首选治疗为
在传染病的预防工作中,国家实行的制度是
A.右上角B.边角位置C.上1/3处D.右1/3处非处方药专有标识的固定位置在印有中文药品通用名称一面的()
肠套叠最易发生的套叠方式是
甲企业经营不善,连年亏损,其上级主管乙工业局决定撤销,遂成立丙清算小组。清算中,发现丁公司尚欠甲企业货款若干拒不偿还。如向法院起诉,应以()为原告。
对先张法预应力钢筋混凝土构件进行湿热养护,采取合理养护制度的主要目的是()。【2011年真题】
独立董事的职责可以分为不同的角色,即()。
留守儿童问题凸显,存在很多心理问题,如果你是妇联部门的一名工作人员,请针对上述情况策划活动,举出三个主题。请你以其中的一个主题为例,叙述实施中应注意的重点。
最新回复
(
0
)