首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
admin
2018-04-15
44
问题
n阶矩阵A经过若干次初等变换化为矩阵B,则( ).
选项
A、|A|—|B|
B、|A|≠|B|
C、若|A|=0则|B|=0
D、若|A|>0则|B|>0
答案
C
解析
因为A经过若干次初等变换化为B,所以存在初等矩阵P
1
,…,P
s
,Q
1
,…,Q
t
,使得
B=P
s
…P
1
AQ
1
…Q
t
,而P
1
,…,P
s
,Q
1
,…,Q
t
都是可逆矩阵,所以r(A)=r(B),若|A|=0,即r(A)<n,则r(B)<n,即|B|=0,选(C).
转载请注明原文地址:https://kaotiyun.com/show/lSX4777K
0
考研数学三
相关试题推荐
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
设A是72阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
设齐次线性方程组(2E-A)x=0有通解x=kξ1=k(-1,1,1)T,k是任意常数,其中A是二次型f(x1,x2,x3)=xTAx对应的矩阵,且r(A)=1.求方程组Ax=0的通解.
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
设a为正常数,f(x)=xea—aex—x+a. 证明:当z>a时f(x)<0.
设A是m×n矩阵,B是n×m矩阵,则()
设A,B是二随机事件,随机变量X=证明:随机变量X和Y不相关的充分必要条件是A与B相互独立.
设A,B是n阶可逆矩阵,满足AB=A+B.则下列关系中不正确的是()
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.
设f(x)在[0,1]上可导且满足f(0)=.证明:至少存在一点ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
随机试题
Christopherisnotmarriedyet:heisstilla【36】.Heisinterested【37】football,whichisanexciting【38】andenjoys【39】towatch
SI导出单位是用SI基本单位以()形式表示的单位。
下列对琅琊山的描述正确的有()。
当理由是一般侵权民事责任的抗辩事由之一,包括()。
关于公告,下列选项正确的是()。
行政机关管理活动最基本的特点是( )
我国的侨乡主要是指()。
A、Mikefoundtwodifferenttypesofapartment.B、Mikeispaying$400permonth.C、Mikehasalreadypaidtwomonths’rent.D、Mik
Thereisnodoubtthatadults,andevenhighlyeducatedadults,varygreatlyinthespeedand【B1】______oftheirreading.Some
SarrElysetookasipfromaplasticcup.Likeapractisedwinetaster,sheswilledthedarkliquidaroundinhermouththenswa
最新回复
(
0
)