首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
admin
2020-03-16
79
问题
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
选项
答案
令f(x)=xsinx+2cosx+πx,需证0<a<x<π时,f(x)是单调增加的。 f
’
(x)=sinx+xcosx一2sinx+π=xcosx一sinx+π, f
’’
(x)=cosx一xsinx—cosx=一xsinx<0, 所以f
’
(x)严格单调减少。 又 f
’
(π)=πcosπ+π=0, 故0<a<x<π时,f(x)的一阶导数大于零,从而函数单调增加,根据b>a可得,f(b)>f(a), 即可得bsinb+2cosb+πb>asina+2cosa+πa。
解析
转载请注明原文地址:https://kaotiyun.com/show/lb84777K
0
考研数学二
相关试题推荐
设f(χ)=χ2sinχ,求f(n)(0).
已知实对称矩阵A满足A3+A2+A-3E=0,证明A=E.
求不定积分
设函数f(x)在[0,π]上连续,且∫0πf(x)sindx=0,∫0πf(x)cosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
求函数y=(x∈(0.+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
[2005年]已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
随机试题
A、Thebirdwasdead.B、Thebirdwasalive.C、It’shardtoanswerthequestion.D、Hefoundoutthechildren’strick.D
病理性中性粒细胞增多常见于以下哪些疾病
甲、乙双方因工程款纠纷引发诉讼,案件经过两级法院审理终结。由于对二审判决结果不服,甲欲向上一级人民法院申请再审。甲提出的下列事实和理由不能得到法院准许的有()。
根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的技术处理方案。
注册会计师可以利用检查文件资料的程序来进行控制测试和实质性程序,但在不同种类的测试中,检查的对象是不同的。( )分析程序具有很强的预期性,它不仅可以帮助注册会计师发现财务报表中的已发生的异常变化,或者预期发生而未发生的变化,还可以帮助注册会计师发现财
对于一般中暑旅游者,可将其置于阴凉通风处、能时让其饮用含盐饮料、解开衣领,放松裤带。()
随着商品流通,贸易往来、人际交流的越来越______,远古时代那种依靠步行的交通方式以及手提、肩扛、头顶的运输方式已很难适应社会发展的需要,于是交通运输设施的兴建与运输工具的制造便_______。
1/2,1/3,3/10,2/7,5/18,()
我国现行宪法规定,全国人大常委会的组成人员中,应当有适当名额的()。
A、Hecan’texplaintheinstructionsclearly.B、Hespeakstoofast.C、Hedoesn’tunderstandtheinstructionsclearly.D、Heisde
最新回复
(
0
)