首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
admin
2020-03-16
72
问题
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa。
选项
答案
令f(x)=xsinx+2cosx+πx,需证0<a<x<π时,f(x)是单调增加的。 f
’
(x)=sinx+xcosx一2sinx+π=xcosx一sinx+π, f
’’
(x)=cosx一xsinx—cosx=一xsinx<0, 所以f
’
(x)严格单调减少。 又 f
’
(π)=πcosπ+π=0, 故0<a<x<π时,f(x)的一阶导数大于零,从而函数单调增加,根据b>a可得,f(b)>f(a), 即可得bsinb+2cosb+πb>asina+2cosa+πa。
解析
转载请注明原文地址:https://kaotiyun.com/show/lb84777K
0
考研数学二
相关试题推荐
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明:aijAT=E,且|A|=1;
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
把y看作自变量,χ为因变量,变换方程=χ.
构造齐次方程组,使得η1=(1,1,0,-1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A为,2阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
[2010年]计算二重积分I=drdθ,其中D={(r,θ)∣0≤r≤secθ,0≤θ≤π/4).
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
随机试题
台湾与大陆和平统一后,台湾特别行政区可以享有比香港、澳门特别行政区更高度的自治权利,主要体现在()
男性,35岁,头痛、头晕1年,加重1周伴心悸、乏力、鼻出血及牙龈出血。查体:血压170/110mmHg,皮肤黏膜苍白,Hb65g/L,PLT148×109/L,尿蛋白(+++),尿红细胞3~5个/HP,BUN38mmol/L,Scr887μmo
下列各项中,除哪项外,均是肾病综合征的临床表现()
下列各项中,属于业务单位战略的有()。
以下不属于双轨学制的代表国家有()。
关于公民民事权利能力的表述,正确的是()。
Themarathonaimsto
Workisoneofsociety’smostimportantinstitutions.Itisthemainmechanismthroughwhichspendpowerisallocated.Itprovid
Myfirst(impress)______ofEnglandwasthatitwasagreyandrainyplace.
Automakersaredoingallsortsofthingstocarstomakethemsmarterandmoreautonomous,asregularreadersareaware.Here’s
最新回复
(
0
)