首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫0af(χ)dχ≥∫abf(χ)dχ; (Ⅱ)(1)对χ>0,χ0>0,证明:lnχ<lnχ0+(χ-χ0) (2)设u(t)在[a,b]上连续
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫0af(χ)dχ≥∫abf(χ)dχ; (Ⅱ)(1)对χ>0,χ0>0,证明:lnχ<lnχ0+(χ-χ0) (2)设u(t)在[a,b]上连续
admin
2020-03-05
32
问题
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫
0
a
f(χ)dχ≥
∫
a
b
f(χ)dχ;
(Ⅱ)(1)对
χ>0,χ
0
>0,证明:lnχ<lnχ
0
+
(χ-χ
0
)
(2)设u(t)在[a,b]上连续,u(t)>0,证明:
选项
答案
由函数f(χ)的连续性与积分中值定理可得,分别存在ξ∈(0,a)与η∈(a,b),使得 ∫
0
a
f(χ)dχ=af(ξ),∫
a
b
f(χ)dχ=(b-a)f(η), 利用函数f(χ)在区间[0,1]上单调非增与ξ<η可得f(ξ)≥f(η),即 [*]∫
0
a
f(χ)=f(ξ)≥f(η)=[*]∫
a
b
f(χ)dχ. 因为a>0且f(χ)≥0,所以 ∫
a
b
f(χ)dχ≥[*]∫
a
b
f(χ)dχ≥[*]∫
a
b
f(χ)dχ. (Ⅱ)(1)由泰勒公式有 lnχ=lnχ
0
+[*](χ-χ
0
)-[*](χ-χ
0
)
2
,其中ξ介于χ与χ
0
之间. 从而有lnχ<lnχ
0
+[*](χ-χ
0
). (2)即证(b-a)ln([*]∫
a
b
u(t)dt)≥∫
a
b
lnu(t)dt即∫
a
b
ln([*]∫
a
b
u(t)dt)dt≥∫
a
b
lnu(t)dt 将χ=u(t)与χ
0
=[*]∫
a
b
u(t)dt代入上式,并将两端在[a,b]上取积分,注意到u(t)>0,b>a, 可知χ
0
>0,则有 ∫
a
b
lnχdt<lnχ
0
.(b-a)+[*](χ-χ
0
)dt, [*] 因此有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lcS4777K
0
考研数学一
相关试题推荐
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为______.
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4{正面出现两次},则事件().
设函数F(x)=,则F(x)()
设随机变量X1和X2相互独立,它们的分布函数分别为F1(x)和F2(x),已知则X1+X2的分布函数F(x)=________.
设函数f(u)可导,y=f(x2)。当自变量x在x=—1处取得增量△x=—0.1时,相应的函数增量△y的线性主部为0.1,则f′(1)等于()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设L是平面单连通有界区域σ的正向边界线,且L不经过原点。n0是L上任一点(x,y)处的单位外法线向量。设平面封闭曲线L上点(x,y)的矢径r=xi+yj,r=|r|,θ是n0与r的夹角,试求。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.讨论f′(x)在x=0处的连续性.
求一个二次多项式f(x),使得f(1)=0,f(2)=3,f(﹣3)=28.
随机试题
简述风化和潮解的概念。
曲线y=ax-x2(a>0)与x轴围成的平面图形被曲线y=bx2(b>0)分成面积相等的两部分,求a,b的值.
急性化脓性关节炎的临床特征是
A.TOF-MRAB.CEMRAC.PC-MRAD.MRCPE.BOID-fMRI用于显示需极短时间内成像的病变
我国实施国家信息化的总体思路不包括( )。
在实际工作中,费用的确认都是在支出发生时直接确认。()
下列各项中,属于账务处理程序主要内容的有()。
下列不属于公积金个人住房贷款特点的是()。
根据著作权法及其相关规定,展览权包括哪些内容?
以下是各网站对国家法定节假日调整方案民意调查统计结果,除掉无效投票外,大约155万网民参与此项调查。下列哪两类调查网民数相近?()
最新回复
(
0
)