首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫0af(χ)dχ≥∫abf(χ)dχ; (Ⅱ)(1)对χ>0,χ0>0,证明:lnχ<lnχ0+(χ-χ0) (2)设u(t)在[a,b]上连续
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫0af(χ)dχ≥∫abf(χ)dχ; (Ⅱ)(1)对χ>0,χ0>0,证明:lnχ<lnχ0+(χ-χ0) (2)设u(t)在[a,b]上连续
admin
2020-03-05
27
问题
(Ⅰ)设非负函数f(χ)在区间[0,1]上连续且单调非增,常数a与b满足0<a<b≤1.求证:∫
0
a
f(χ)dχ≥
∫
a
b
f(χ)dχ;
(Ⅱ)(1)对
χ>0,χ
0
>0,证明:lnχ<lnχ
0
+
(χ-χ
0
)
(2)设u(t)在[a,b]上连续,u(t)>0,证明:
选项
答案
由函数f(χ)的连续性与积分中值定理可得,分别存在ξ∈(0,a)与η∈(a,b),使得 ∫
0
a
f(χ)dχ=af(ξ),∫
a
b
f(χ)dχ=(b-a)f(η), 利用函数f(χ)在区间[0,1]上单调非增与ξ<η可得f(ξ)≥f(η),即 [*]∫
0
a
f(χ)=f(ξ)≥f(η)=[*]∫
a
b
f(χ)dχ. 因为a>0且f(χ)≥0,所以 ∫
a
b
f(χ)dχ≥[*]∫
a
b
f(χ)dχ≥[*]∫
a
b
f(χ)dχ. (Ⅱ)(1)由泰勒公式有 lnχ=lnχ
0
+[*](χ-χ
0
)-[*](χ-χ
0
)
2
,其中ξ介于χ与χ
0
之间. 从而有lnχ<lnχ
0
+[*](χ-χ
0
). (2)即证(b-a)ln([*]∫
a
b
u(t)dt)≥∫
a
b
lnu(t)dt即∫
a
b
ln([*]∫
a
b
u(t)dt)dt≥∫
a
b
lnu(t)dt 将χ=u(t)与χ
0
=[*]∫
a
b
u(t)dt代入上式,并将两端在[a,b]上取积分,注意到u(t)>0,b>a, 可知χ
0
>0,则有 ∫
a
b
lnχdt<lnχ
0
.(b-a)+[*](χ-χ
0
)dt, [*] 因此有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lcS4777K
0
考研数学一
相关试题推荐
若三维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为______。
下列函数中不是初等函数的是
已知ξ1=(一3,2,0)T,ξ2=(一1,0,一2)T是方程组的两个解,则此方程组的通解是___________.
设函数y=y(x)由方程ex+y+cosxy=0确定,则=______.
设点M1(1,一1,一2),M2(1,0,3),M3(2,1,2),则点M3到向量的距离为________.
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f’’(ξ)|≥4.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,证明必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
计算下列反常积分(广义积分)的值:(Ⅰ)(Ⅱ)dx;(Ⅲ)
设f(x)连续,F(x)=∫0sinxf(tx2)dt。(Ⅰ)求F’(x);(Ⅱ)试讨论函数F’(x)的连续性。
随机试题
临床医学研究的保密道德哪项不正确
经产妇,40岁。近2年痛经并逐渐加重,伴经量增多及经期延长,届时需服强止痛药。查子宫均匀增大如孕8周,质硬,有压痛,经期压痛明显。
根据我国国情,现阶段我国土地整理重点在()。
(2010年)图4—10所示等边三角板ABC,边长a,沿其边缘作用大小均为F的力,方向如图所示。则此力系简化为()。
商业性企业及主营商业的企业,年应税销售额不低于50万元的,可以认定为一般纳税人。()
衡量一个广告市场成熟与否的重要标准就是看()在广告市场中的地位、成长发育状况及代理服务功能。
现代社会教师角色应如何定位?
讨论函数的连续性.
下列说法错误的是______。
Thefirstsentenceofthepassagemeansthat______.Whenwritingaboutthedutiesyouhavebeenengagedin,youshould______.
最新回复
(
0
)