首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为______.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为______.
admin
2019-02-23
103
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为______.
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关即可.
y
1
-y
2
与y
2
-y
3
均是式①对应的齐次线性方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在不全为零的常数k
1
与k
2
使
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.
若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.
于是
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/l904777K
0
考研数学一
相关试题推荐
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x一1)2,研究函数f(x)在x=1处的可导性.
设总体X~N(0,22),X1,X2,…,X30为总体X的简单随机样本,求统计量所服从的分布及自由度.
设f(x)为偶函数,且满足f’(x)+2f(x)一=一3x+2,求f(x).
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一l的特征向量.求|A*+3E|.
求下列级数的和:
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且,求。
二次型f(x1,x2,x3)=-2x1x2+6x1x3-6x2x3的秩为2。(Ⅰ)求参数c及此二次型对应矩阵的特征值;(Ⅱ)指出方程f(x1,x2,x3)=1表示何种二次曲面。
已知a0=3,a1=5,对任意的n>1,有证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
设由方程φ(bz一cy,cx一az,ay一bx)=0(*)确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ1’一aφ2’≠0,求
随机试题
下列步骤中,不属于应用运筹学进行决策过程的是()
癫痫发作,哪种不属于全身性发作
男性,35岁,发热、咳嗽、痰中带血1个月来诊。X线胸片示右肺下叶背段炎性浸润,其内有空洞形成。为明确诊断,应首选下列哪项检查
断面不平坦,横切面外缘褐色或淡褐色,皮部墨绿色或棕色的中药材是()。
患者,女性,35岁。因腹泻每日10~15次,粪便为米泔水样来院就诊,患者轻度脱水,结合患者症状和医生查体结果,高度怀疑为霍乱。正在等待实验室检查结果以明确诊断。该患者经全力抢救未见好转不幸死亡,护士应对尸体立即进行卫生处理并
人民法院作出判决,宣告某公民死亡,3天后该公民出现。在此种情况下,该公民或者利害关系人,可以采用:()
按照任何事件A概率的计算公式为P(A)=k/n,一批产品有n件,其中有m件次品,表述若一次抽2件,则B=抽到2件正品的概率的公式应该表示为()。
预制安装圆形水池,进行环向预应力钢丝缠绕时,要求每缠一盘钢丝测定一次应力值,以便( ),并按规定格式填写记录。
下列情况应视同销售缴纳消费税的有( )。
某公司需要根据下一年度宏观经济的增长趋势预测决定投资策略。宏观经济增长趋势有不景气、不变和景气3种,投资策略有积极、稳健和保守3种,各种状态的收益如表6-3所示。基于maxmin悲观准则的最佳决策是(68)。
最新回复
(
0
)