首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关
admin
2021-11-09
38
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关
选项
答案
经初等变换向量组的秩不变.把第1列的-1倍分别加至其余各列,有 (β,β+α
1
,β+α
2
,…,β+α
t
)→(β,α
1
,α
2
,…,α
t
). 因此 r(β,β+α
1
,β+α
2
,…,β+α
t
)=r(β,α
1
,α
2
,…,α
t
). 由于α
1
,α
2
,...,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,...,α
t
)=t,又β必不能由α
1
,α
2
,...,α
t
线性表出(否则Aβ=0),故r(α
1
,α
2
,...,α
t
,γ)=t+1. 所以 r(β,β+α
1
,β+α
2
,…,β+α
t
)=t+1· 即向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lcy4777K
0
考研数学二
相关试题推荐
已知,其中f(x)二阶可微.求f(0),fˊ(0),f"(0)及
设A为3阶方阵,如果A-1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且g(x)≠0,(x∈[a,b]),g"(x)≠0,(a﹤x﹤b),证明:存在ε∈(a,b),使得.
设曲线L1、L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
星形线x=acos3t,y=asin3t所围图形的面积为__________。
求函数f(x,y,z)=x+y-z2+5在区域D:x2+y2+z2≤2上的最大值和最小值。
计算二重积分,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
随机试题
简述一范式存在的问题。
二次型f(x1,x2,x3)=x12+2x1x2+x22+x32的正惯性指数为______.
视神经盘(视神经乳头)()
Anyone’sresponsetoattemptstotreathisorherheadacheissovariable.Thereassuranceofaplacebomaybeveryeffectivein
可用于治疗吐泻转筋的药物是
(2010年多项选择第32题)关于企业总法律顾问主要职责的说法,正确的是()。
机电安装工程中,焊材的( )仅适用于一般低碳钢和强度较低的普通低碳钢结构的焊接。
下列关于定金的有关规定中,表述正确的是()。
对取保候审保证人的罚款决定,由公安机关作出。()
GermanChancellor(首相)OttoVonBismarckmaybemostfamousforhismilitaryanddiplomatictalent,buthislegacy(遗产)includesman
最新回复
(
0
)