首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关
admin
2021-11-09
60
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即A卢≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关
选项
答案
经初等变换向量组的秩不变.把第1列的-1倍分别加至其余各列,有 (β,β+α
1
,β+α
2
,…,β+α
t
)→(β,α
1
,α
2
,…,α
t
). 因此 r(β,β+α
1
,β+α
2
,…,β+α
t
)=r(β,α
1
,α
2
,…,α
t
). 由于α
1
,α
2
,...,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,...,α
t
)=t,又β必不能由α
1
,α
2
,...,α
t
线性表出(否则Aβ=0),故r(α
1
,α
2
,...,α
t
,γ)=t+1. 所以 r(β,β+α
1
,β+α
2
,…,β+α
t
)=t+1· 即向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lcy4777K
0
考研数学二
相关试题推荐
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
过点P(1,0)作曲线的切线,求:该平面图形绕x轴旋转一周所成旋转体体积;
设函数y=f(x)在(0,+∞)内有界且可导,则().
当x﹥0时,证明:.
求极限.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任一点。证明:|f’(c)|≤.
设f(x)∈C[0,1],f(x)﹥0,证明积分不等式:.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等。证明:|A|≠0.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
A、0.B、-∞.C、+∞.D、不存在但也不是∞.D因为et=+∞,et=0,故要分别考察左、右极限.由于因此应选D.
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)