首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:BTAB正定的充分必要条件是r(B)=n.
admin
2021-11-25
38
问题
设A为m阶正定矩阵,B为m×n阶实矩阵,证明:B
T
AB正定的充分必要条件是r(B)=n.
选项
答案
因为(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,所以B
T
AB为对称矩阵。 设B
T
AB是正定矩阵,则对任意的X≠0 X
T
B
T
ABX=(BX)
T
A(BX)>0,所以BX≠0,即对任意的X≠0有BX≠0,或方程组BX=0只有零解,所以r(B)=n. 反之,设r(B)=n,则对任意的X≠0,有BX≠0 因为A为正定矩阵,所以X
T
(B
T
AB)X=(BX)
T
A(BX)>0,所以B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/liy4777K
0
考研数学二
相关试题推荐
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设P为可逆矩阵,A=PTP.证明:A是正定矩阵。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
AB=0,A,B是两个非零矩阵,则
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
求极限=_______.
随机试题
A.冻伤B.反射性心率减慢C.腹泻D.一过性冠状动脉收缩E.体温骤降
比较成熟的商品化软件是()。
下列不属于取得国有土地使用费的是()。
根据物权法律制度的规定,下列关于建筑物区分所有权的表述中,错误的有()。(2010年试题)
读书贵有疑,读书的可贵之处就是独立思考,敢于大胆探索和追求。但是,提倡读书有疑,并不是脱离客观实际,并不是违背科学原则的胡乱猜疑。必须善于疑,还要疑得正确,疑得有长进。当疑不疑或乱疑,不但得不到任何长进,相反,还会把思想引上邪路,这决不是我们应取的治学态度
Therecentboomintechnologicaladvances,formationofnewbusinesses,andpersonal【1】isthethird,andmostdramatic,suchwav
在窗体上有一个命令按钮Command1,编写事件代码如下:PrivateSubCommand1_Click()Dima(10),P(3)AsIntegerk=5Fori=1To10
Oneofthemostimportanttechnologicaldevelopmentsduringthe1980shasbeentheemergenceofopticalfibercommunicationasa
Thelegallimitfordrivingafterdrinkingis80milligramsofalcohol(酒精)in100millilitersofbloodwhentested.Butthereis
A、Atwork.B、Atthemeeting.C、Backathome.D、Awayfromhome.A
最新回复
(
0
)