已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.

admin2017-06-14  36

问题 已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程

后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.

选项

答案方程组(Ⅰ)的通解为k1ξ1 + k2ξ2+ k3ξ3= [*] 代入添加的两个方程,得 [*] 得η1=[2,-3,0]T,η2=[0,1,-1]T, 故方程组(Ⅱ)的基础解系为 α1=2ξ1—3ξ2=[-4,-3,2,5]T,α22-ξ3=[2,-1,-1,0]T

解析
转载请注明原文地址:https://kaotiyun.com/show/lpu4777K
0

最新回复(0)