首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2017-06-14
40
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为k
1
ξ
1
+ k
2
ξ
2
+ k
3
ξ
3
= [*] 代入添加的两个方程,得 [*] 得η
1
=[2,-3,0]
T
,η
2
=[0,1,-1]
T
, 故方程组(Ⅱ)的基础解系为 α
1
=2ξ
1
—3ξ
2
=[-4,-3,2,5]
T
,α
2
=ξ
2
-ξ
3
=[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/lpu4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
随机试题
日本传统文学的集大成之作是()
根据经济活动客观存在的相互依存、相互联系的关系,将两个性质不同但又相关的指标加以对比,求出比率的分析方法是指()
A.基于射线的穿透性、荧光效应和感光效应,以及人体组织之间有密度和厚度的差别进行成像B.用X线束对人体检查部位一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换器转变为电信号,再经模拟一数字转换器转为数字,输入计算机进行断层
根据我国相关法律规定,下列哪些情形下,商务部可决定采取保障措施?
建筑安装企业的工程结算收入包括()。
已知点P(sinα-cosoα,tanα)在第一象限,则在[0,2π]内α的取值范围是()。
2005年某省海洋产业总产值达2144.6亿元;海洋产业增加值达302.4亿元,约占全省海洋产业总产值的14.1%。海洋三大产业结构由2000年的31.0:16.7:52.3调整为2005年的21.0:13.2:65.8。以海洋经济为依托的沿海县
A、 B、 C、 D、 C
Saralooksjustlikehersister______she’smuchyounger.
A、Thewoodensailingship.B、Thecontainership.C、Thesteam-poweredship.D、Thereplenishingship.C
最新回复
(
0
)