首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
admin
2019-03-12
77
问题
设f(x)二阶可导,f(0)=f(1)=0且
证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*] 由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据泰勒公式 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,c) f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1) 整理得 [*] 所以存在ξ∈(0,1),使得f’’(ξ)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/m5P4777K
0
考研数学三
相关试题推荐
计算(a>0),其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆周的较短一段弧和坐标轴所围成的区域.
求函数f(x,y)=x2+8y2一4x2y2在区域D={(x,y)|x2+4y2≤4,y≥0}上的最大值与最小值.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
将三封信随机地投入编号为1,2,3,4的四个邮筒,记X为1号邮筒内信的数口,Y为有信的邮筒数目,求:(X,Y)的联合概率分布;
设总体X~P(λ),则来自总体X的简单随机样本X1,X2,…,Xn的样本均值的概率分布为_________.
已知三元二次型xTAx的平方项系数都为0,α=(1,2,—1)T满足Aα=2α.①求xTAx的表达式.②求作正交变换x=Qy,把xTAx化为标准二次型。
(Ⅰ)求积分f(t)=(Ⅱ)证明f(t)在(一∞,+∞)连续,在t=0不可导.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(Ⅰ)求L的方程;(Ⅱ)当L与直线y=ax所围成平面图形的面积为时,确定a的值。
微分方程y"+y=x2+1+sinx的特解形式可设为()
有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.
随机试题
大多数气田的天然气是可燃性气体,主要成分是(),还含有少量非烃气体。
在化工管路中,通常在管路的相对低点安装有排气阀。
术前常规禁食的主要目的是
干金苇茎汤与大黄牡丹汤共有的药物是仙方活命饮与透脓散共有的药物是
开放性气胸患者呼吸困难最主要的急救措施是()。
可转债持有人申报转股的可转债数量大于其实际可用可转债余额的,应按其申报数量办理转股。()
与以往的银行理财产品相比,代客境外理财产品具有的特点是()。
我国的反洗钱工作开始于2001年。2001年9月,中国人民银行成立了反洗钱工作领导小组。2002年9月,中国人民银行制定了《金融机构反洗钱规定》、《从民币大额和可疑支付交易报告管理办法》和《金融机构大额和可疑外汇资金交易报告管理办法》(简称“一规定两办法”
唐代前期是修史的“黄金时期”,相继问世了八部断代史书,号称“唐修八史”。下列选项不属于“唐修八史”的是()。
以下关系表达式中,其值为假的是:______。
最新回复
(
0
)