首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
admin
2019-03-12
75
问题
设f(x)二阶可导,f(0)=f(1)=0且
证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0, [*] 由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0,根据泰勒公式 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,c) f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1) 整理得 [*] 所以存在ξ∈(0,1),使得f’’(ξ)≥8.
解析
转载请注明原文地址:https://kaotiyun.com/show/m5P4777K
0
考研数学三
相关试题推荐
计算二重积分{|x+y|一2|dxdy,其中D={(x,y)|0≤x≤2,一2≤y≤2}.
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明:(Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(一∞,+∞)上有界.
求下列微分方程的通解或特解:
求下列微分方程的通解:(Ⅰ)y"一3y’=2—6x;(Ⅱ)y"+y=2cosx;(Ⅲ)y"+4y’+5y=40cos3x.
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(I)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=().
计算二重积分,其中D为平面区域{(x,y)|x2+y2≤2x,x≥1}。
设Ia=,其中Da为曲线y=(a>0)与y=所围成的区域.则(Ⅰ)求Ia;(Ⅱ)求a的值使得Ia最小。
判断级数的敛散性.
随机试题
评估人员通过量化各种政策或行政方案的总成本和总效果来对它们进行对比从而提出建议的评估方法是【】
下列哪种疾病与输血无关?
A.牛肉膏蛋白胨B.煌绿、胆盐、硫代硫酸钠、枸橼酸盐C.乳糖D.胆盐E.中性红SS琼脂培养基是选择性很强的培养基,成分较多,其抑制剂为
下列项目中,能同时影响资产和负债发生变化的是()。
下列关于客户理财需要和目标分析的说法中,正确的是()。
()是发达国家企业实现技术国际化的最常用办法。
里坊制源于出现在秦朝的闾里制,并且继承了它的管理办法。()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值”。这句话的含义是
当各项目小组成员对职能经理和项目经理双重负责的时候,项目团队建设经常会显得比较复杂。对这种双重负责关系的有效管理通常是(45)的职责。
TheCarnegieFoundationreportsaysthatmanycollegeshavetriedtobe"allthingstoallpeople".Indoingso,theyhaveincre
最新回复
(
0
)