首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)二阶可导,且=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
设f(χ)二阶可导,且=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
admin
2019-08-23
83
问题
设f(χ)二阶可导,且
=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
选项
答案
由[*]=0得f(0)=1,f′(0)=0, f(0)=f(1)=1,由罗尔定理,存在c∈(0,1),使得f′(c)=0. 令φ(χ)=χ
2
f′(χ),φ(0)=φ(c)=0,由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ′(ξ)=0,而φ′(χ)=2χf′(χ)+χ
2
f〞(χ),于是2ξf′(ξ)+ξ
2
f〞(ξ)=0. 再由ξ≠0得ξf〞(ξ)+2f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/m9A4777K
0
考研数学二
相关试题推荐
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
求y”-y=e|x|满足初始条件y(1)=0,y’(1)=0的特解.
设微分方程xf”(x)-f’(x)=2x.(I)求上述微分方程的通解;(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
设f(x)在x=0处连续,且x≠0时,f(x)=,求曲线y=f(x)在x=0对应的点处的切线方程.
设当x∈[-1,1,1]时,f(x)连续,F(x)=∫-11|x-t|]f(t)dt,x∈[-1,1].(I)若f(x)为偶函数,证明F(x)也是偶函数;(Ⅱ)若f(x)>0(-1≤x≤1),证明曲线y=F(x)在区间[-1,1]上是凹的.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时(如图1一3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3。)
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
求极限
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
设L:(a>0,0≤t≤2π)(1)求曲线L与χ轴所围成平面区域D的面积;(2)求区域D绕χ轴旋转一周所成几何体的体积.
随机试题
春季发生疮疡其成因多为秋季发生疮疡其成因多为
抑制胃液分泌的物质是
关于妊娠期贫血的诊断标准正确的是()
固定资产清理的会计处理中,最终的损益应作为()处理。
账证核对是指核对账簿记录与原始凭证、记账凭证的()是否一致,记账方向是否相符。
下列选项中属于个人消费贷款的有()。
充分就业是指()。
2007年全球金融海啸肆虐,以家电为代表的消费性电子产品外销的需求急速衰退,家电企业可谓________。为了扩大国内市场,也为了让国内家电企业走出低谷,家电下乡、以旧换新、节能补贴等政策陆续出台。这些扶持性政策________,对家电业发展产生了巨大的推
近来《世界经济论坛》常常出现的文字错漏让主编老耿十分恼火,为此他专门设立了责任校对。本期《世界经济论坛》付印前,责任校对小欧向耿主编汇报说:“所有文章都仔细校对过了,没有发现任何文字、标点错误。”如果小欧的这一说法为真,则在下述三个判断中:(1)没有文章被
Excessivesugarhasastrongmal-effectonthefunctioningofactive【C1】o______suchastheheart,kidneysandthebrain.Shipwre
最新回复
(
0
)