首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求f在xTx=3下的最大值。
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。 求f在xTx=3下的最大值。
admin
2019-01-13
44
问题
设二次型f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
一2x
1
x
2
—2x
1
x
3
+2ax
2
x
3
通过正交变换化为标准形2y
1
2
+2y
2
2
+by
3
2
。
求f在x
T
x=3下的最大值。
选项
答案
二次型f=x
T
Ax在正交变换x=Qy下的标准形为2y
1
2
+2y
2
2
—y
3
2
。条件x
T
x=3等价于y
T
Q
T
Qy=y
1
2
+y
2
2
+y
3
2
=3,此时f=2y
1
2
+2y
2
2
一y
3
2
=6—3y
3
2
的最大值为6,所以f在x
T
x=3下的最大值是6。
解析
转载请注明原文地址:https://kaotiyun.com/show/cfj4777K
0
考研数学二
相关试题推荐
(1993年)设χ>0,常数a>e,证明:(a+χ)a<aa+χ
(2000年)设函数f(χ),g(χ)是大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时有【】
(1998年)利用代换y=将方程y〞cosχ-2y′sinχ+3ycosχ=eχ化简,并求出原方程的通解.
(1989年分)设f(χ)=sinχ-∫0χ(χ-t)f(t)dt,其中f为连续函数,求f(χ).
(1993年)设f(χ)=,则在点χ=1处函数f(χ)【】
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
计算不定积分.
设为正定二次型,则t的取值范围是_______
随机试题
下列函数是周期函数的是()
不支持代谢性碱中毒的血液化验检查结果是
A.肉桂B.鹿角胶C.两者都选D.两者都不选左归丸的药物组成包含
基于双膜部件系统设计的相机是
胃气阴两伤常见的舌苔是
下列关于信贷授权形式的划分,正确的有()。
商业银行个人理财业务是指那些能为客户提供理财规划服务的业务人员,以及其他与个人理财业务销售和管理活动紧密相关的专业人员,这些专业化服务表现为哪些性质?()
权责发生制下,企业在一定会计期间所形成的收入,可能在本期已经收到货币资金,也可能在本期尚未收到货币资金。()
如下图,连续函数y=f(x)在区间[﹣3,﹣2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[﹣2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=
A.fightingB.subjectsC.certainlyD.questionE.resultinF.furtherG.appearance
最新回复
(
0
)