首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-26
42
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 f′(x)=2+[*](x+lnx-1), 令f′(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f′(x)<0,f(x)单调减少;而当x>1时f′(x)>0,f(x)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/mGu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 C
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设f(x)连续,(A为常数),求φ’(t)并讨论φ’(x)在x=0处的连续性.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
已知y1=e3x-xe2x,y2=ex-xe2x,y3=-xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=__________.
若的收敛域是(一8,8],则的收敛半径是___________.
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
随机试题
青春期与围绝经期功血治疗原则的不同点是()
酚妥拉明是
Justtellmewhatsubjectyou’dlikemeto______sothatIcouldgetsomenotesready.
开展党的群众路线教育实践活动的主要任务是聚焦到()上。
整个人类社会都离不开警察,原始社会以及将来的共产主义社会都会有警察的存在。( )
歌德评价帕格尼尼“在琴弦上展现了火一样的灵魂”。巴黎人为他的琴声陶醉,忘记了当时正在流行的霍乱。在维也纳,一个盲人听到他的琴声,以为是一个乐队在演奏,当得知这只是一个叫帕格尼尼的意大利人用一把小提琴奏出的声音时,盲人大叫一声:“这是个魔鬼!”这段文
英国每日邮报报道.在前往Azasskava洞穴的探险中,参与者发现了雪人的脚印,以及各种雪人用来表示他占领领地的标记——折断的树枝,另外在位于克麦罗沃地区某洞穴发现了灰色“头发”样本。据此.俄罗斯当局宣称雪人正生活在西伯利亚。下列哪项如果为真,最能质疑俄罗
ThereisasubstantialbodyofevidenceshowingthatHIVcausesAIDS—andthatantiretroviraltreatment(ART)hasturnedtheviral
在OSI七层协议中,_____________充当了翻译官的角色,确保一个数据对象能在网络中的计算机间以双方协商的格式进行准确的数据转换和加解密。
Themantowhomwehandedtheformspointedoutthattheyhadnotbeen______filledin.
最新回复
(
0
)