首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2016-10-26
71
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 f′(x)=2+[*](x+lnx-1), 令f′(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f′(x)<0,f(x)单调减少;而当x>1时f′(x)>0,f(x)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/mGu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设矩阵且|A|=﹣1.又设A的伴随矩阵A*有特征值λo,属于λo的特征向量为α=(﹣1,﹣1,1)T,求a,b,c及λo的值.
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
随机试题
决策民主化的特征有()
平等原则是指()。
A、遗传性球形红细胞增多症B、地中海贫血C、遗传性椭圆形红细胞增多症D、免疫性血小板减少性紫癜E、自体免疫性溶血性贫血以皮肤黏膜及内脏出血为主要表现的疾病是()
工程量清单计价中,分部分项工程的综合单价由完成规定计量单位工程量清单项目所需( )等费用组成。
固定资产变动包括()。
外部培训具体应包括()。
请认真阅读下文,并按要求作答。一个小村庄的故事山谷中,早先有过一个美丽的小村庄。山上的森林郁(yù)郁葱葱,村前河水清澈(chè)见底,天空湛(zhàn)蓝,空气清新甜润。村里住着几十户人家。不知从什么时候起,家家有了锋利的斧
取保候审由检察机关执行。()
当前微机上运行的Windows属于()。
Youmusthaveseenalotofinterestingmovies,______?
最新回复
(
0
)