首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论方程2x3-9x2+12x-a=0实根的情况.
讨论方程2x3-9x2+12x-a=0实根的情况.
admin
2018-09-25
38
问题
讨论方程2x
3
-9x
2
+12x-a=0实根的情况.
选项
答案
令f(x)=2x
3
-9x
2
+12x-a,讨论方程2x
3
-9x
2
+12x-a=0实根的情况,即讨论函数f(x)零点的情况.显然, [*] 所以,应求函数f(x)=2x
3
-9x
2
+12x-a的极值,并讨论极值的符号.由 f’(x)=6x
2
-18x+12=6(x-1)(x-2),得驻点为x
1
=1,x
2
=2,又f’’(x)=12x-18,f’’(1)<0,f’’(2)>0,得x
1
=1为极大值点,极大值为f(1)=5-a;x
2
=2为极小值点,极小值为f(2)=4-a. 当极大值f(1)=5-a>0,极小值f(2)=4-a<0,即4<a<时,f(x)=2x
3
-9x
2
+12x-a有三个不同的零点,因此方程2x
3
-9x
2
+12x-a=0有三个不同的实根; 当极大值f(1)=5-a=0或极小值f(2)=4-a=0,即a=5或a=4时,f(x)=2x
3
-9x
2
+12x-a有两个不同的零点,因此方程2x
3
-9x
2
+12x-a=0有两个不同的实根; 当极大值f(1)=5-a<0或极小值f(2)=4-a>0,即a>5或a<4时,f(x)=2x
3
-9x
2
+12x-a有一个零点,因此方程2x
3
-9x
2
+12x-a=0有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/mYg4777K
0
考研数学一
相关试题推荐
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
求不定积分dx.
将长为a的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使两段面积之和最小,问两段铁丝各长多少?
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
求下列曲线积分:(Ⅰ)I=∮L|xy|ds,其中L:=1(a>b>0);(Ⅱ)I=∫Ly2ds,其中平面曲线L为旋轮线(0≤t≤2π)的一拱;(Ⅲ)I=∫L(x+y)ds,其中L为双纽线r2=a2cos2θ(极坐标方程)的右面一瓣.
求下列旋转体的体积V:(Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体;(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
设有抛物线Γ:y=a—bx2(a>0,b>0),试确定常数a、b的值使得(1)Γ与直线y=x+1相切;(2)Γ与x轴所围图形绕y轴旋转所得旋转体的体积为最大.
(1994年)设求在的值.
随机试题
简述师幼关系的影响因素。
【B1】【B10】
胃十二指肠溃疡手术的绝对适应证是大多数可经非手术治疗好转的是
估算流动资金的扩大指标估算法的一般常用基数不包括()。
【背景资料】某施工单位承担了一项道路工程的施工任务。工程开工前,项目经理部编制了项目管理实施规划并报监理单位审批,监理工程师审查后,建议施工单位通过调整个别工序作业时间的方法,将路基施工进度计划工期控制在210d内,如图3—1所示。施工单位通过
合伙协议约定有合伙企业的经营期限的,下列情形下,合伙人不可以退伙的是()
根据《合同法》的规定,下列哪些合同无效?
你是单位的新人,领导将一项重要的工作任务交给你,并嘱咐你不懂的地方一定要及时沟通。由于你是第一次负责这么重要的工作,总是不敢做决定,经常找领导请教意见。某日你找领导沟通工作时,领导严厉批评你能力欠妥。请问,你认为问题出在哪里?你应该如何处理?
将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张。如果分给同一人的2张参观券连号,那么不同的分法有多少种?
Theideaswhichhadgrownovertwothousandyearsofobservationhavehadtoberadicallyrevised.Inlessthanahundredyears,
最新回复
(
0
)