首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论方程2x3-9x2+12x-a=0实根的情况.
讨论方程2x3-9x2+12x-a=0实根的情况.
admin
2018-09-25
48
问题
讨论方程2x
3
-9x
2
+12x-a=0实根的情况.
选项
答案
令f(x)=2x
3
-9x
2
+12x-a,讨论方程2x
3
-9x
2
+12x-a=0实根的情况,即讨论函数f(x)零点的情况.显然, [*] 所以,应求函数f(x)=2x
3
-9x
2
+12x-a的极值,并讨论极值的符号.由 f’(x)=6x
2
-18x+12=6(x-1)(x-2),得驻点为x
1
=1,x
2
=2,又f’’(x)=12x-18,f’’(1)<0,f’’(2)>0,得x
1
=1为极大值点,极大值为f(1)=5-a;x
2
=2为极小值点,极小值为f(2)=4-a. 当极大值f(1)=5-a>0,极小值f(2)=4-a<0,即4<a<时,f(x)=2x
3
-9x
2
+12x-a有三个不同的零点,因此方程2x
3
-9x
2
+12x-a=0有三个不同的实根; 当极大值f(1)=5-a=0或极小值f(2)=4-a=0,即a=5或a=4时,f(x)=2x
3
-9x
2
+12x-a有两个不同的零点,因此方程2x
3
-9x
2
+12x-a=0有两个不同的实根; 当极大值f(1)=5-a<0或极小值f(2)=4-a>0,即a>5或a<4时,f(x)=2x
3
-9x
2
+12x-a有一个零点,因此方程2x
3
-9x
2
+12x-a=0有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/mYg4777K
0
考研数学一
相关试题推荐
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设A=,则|λE-A|的值为?
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足f″(x)+g(x)f′(x)-f(x)=0.求证:f(x)=0(x∈[a,b]).
求下列曲面的面积:(Ⅰ)半球面z=及旋转抛物面2az=x2+y2所围立体的表面S;(Ⅱ)锥面z=被柱面z2=2x所割下部分的曲面S.
求下列三重积分:(Ⅰ)I=dV,其中Ω是球体x2+y2+z2≤R2(h>R);(Ⅱ)I=ze(x+y)2dV,其中Ω:1≤x+y≤2,x≥0,y≥0,0≤z≤3;(Ⅲ)I=(x3+y3+z3)dV,其中Ω由半球面x2+y2+z2=2z(z≥1)与锥面
求解下列方程:(Ⅰ)求方程xy″=y′lny′的通解;(Ⅱ)求yy″=2(y′2-y′)满足初始条件y(0)=1,y′(0)=2的特解.
设X1,X2,…,Xn是取标准正态总体的简单随机样本,已知统计量Y=服从t分布,则常数α=____________.
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
设求f(x)的间断点并判定其类型.
随机试题
离心分离因数的表达式为()。
类风湿关节炎受累关节多见于
患者,男,70岁。初小文化程度。支气管哮喘病患者,因哮喘发作就诊。王医生开完药后又随手给他一张健康教育处方,嘱“按处方上写的去做”。其做法不符合
甾体皂苷具有的性质为()
生产过程是指
A.疏肝调达B.清利头目C.解表透邪D.宜肺利咽E.辛凉透疹
有限责任公司注册资本的最低限额为人民币()元。
表达了作曲家作为一个捷克人身在美国的种种印象和感受的一部交响音乐作品是_________创作的_________。
Thetourguideisintroducingtheexhibitof______pottery.
AndrewCarnegie,knownastheKingofSteel,builtthesteelindustryintheUnitedStates,and,intheprocess,becameoneoft
最新回复
(
0
)