首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明: aij=AijATA=E且|A|=1;
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明: aij=AijATA=E且|A|=1;
admin
2019-01-13
66
问题
A为n(n≥3)阶非零实矩阵,A
ij
为|A|中元素a
ij
的代数余子式,试证明:
a
ij
=A
ij
A
T
A=E且|A|=1;
选项
答案
当a
ij
=A
ij
时,有A
T
=A
*
,则A
T
A=AA
*
=|A|E.由于A为n阶非零实矩阵,即a
ij
不全为0,所以[*]而tr(AA
T
)=tr(|A|E)=n|A|,这说明|A|>0.在AA
T
=|A|E两边取行列式,得|A|
n-2
=1,|A|=1. 反之,若A
T
A=E且|A|=1,则A
*
A=|A|E=E且A可逆,于是A
T
A=A
*
A,A
T
=A
*
,即a
ij
=A
ij
.
解析
转载请注明原文地址:https://kaotiyun.com/show/myj4777K
0
考研数学二
相关试题推荐
(2007年)求微分方程y〞(χ+y′2)=y′满足初始条件y(1)=y′(1)=1的特解.
(1987年)求由曲线y=1+sinχ与直线y=0,χ=0,χ=π围成的曲边梯形绕Oχ轴旋转而成旋转体体积V.
(1996年)设f(χ)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,f′(a).f′(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f〞(η)=0.
函数f(x,y,z)=一2x2在x2一y2一2z2=2条件下的极大值是___________.
设A,B是n阶矩阵,则下列结论正确的是()
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
用配方法化二次型f(x1,x2,x3)=为标准形.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻日点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
设有定义在(-∞,+∞)上的函数:则(Ⅰ)其中在定义域上连续的函数是________.
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)