设f(x)在[0,+∞)内可导且f(0)=1,f’(x)﹤f(x)(x﹥0).证明:f(x)﹤ex(x﹥0).

admin2020-03-16  40

问题 设f(x)在[0,+∞)内可导且f(0)=1,f’(x)﹤f(x)(x﹥0).证明:f(x)﹤ex(x﹥0).

选项

答案令Φ(x)=e-xf(x),则Φ(x)在[0,+∞)内可导,又Φ(0)=1,Φ’(x)=e-x[f’(x)-f(x)]<0(x>0),所以当x>0时,Φ(x)<Φ(0)=1,所以有f(x)<ex(x>0).

解析
转载请注明原文地址:https://kaotiyun.com/show/n7A4777K
0

最新回复(0)