首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
admin
2015-08-14
69
问题
向量组β
1
,β
2
,…,β
t
可由向量组α
1
,α
2
,…,α
s
线性表出,设表出关系为
若α
1
,α
2
,…,α
s
线性无关,证明:r(β
1
,β
2
,…,β
t
)=r(C).
选项
答案
B=[β
1
,β
2
,…,β
t
]=[α
1
,α
2
,…,α
s
]C=AC r(B)=r(AC)≤r(C).又r(B)=r(AC)≥r(A)+r(C)-s,r(A)=s,故r(B)≥r(C),从而有r(B)=r(C).
解析
转载请注明原文地址:https://kaotiyun.com/show/nM34777K
0
考研数学二
相关试题推荐
设f(x)=1/πx+1/sinπx-1/π(1-x),x∈[1/2,1),试补充定义使得f(x)在[1/2,1]上连续.
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=f(x)/x().
设A,B为两个n阶矩阵,下列结论正确的是().
设f(x)为连续函数,且f(1)=1,则
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,试证:至少存在一点ξ∈(0,1),使得.
∫sin3xcosxdx=________.
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0×
随机试题
假此科敛丁口,每责一头,辄倾数家之产。假:科敛:
下述哪些因素可使静脉回流加速
滴虫性阴道炎的临床表现为:细菌性阴道病的临床表现为:
A.紫苏子B.生姜C.大枣D.甘草E.肉桂
不适用行政处罚简易程序的是
“生产成本”账户的贷方期末余额表示在产品成本。()
在E—R图中实体型是用菱形表示。()
列宁说:“任何真理,如果把它说得‘过火’……加以夸大,把它运用到实际适用的范围之外,便可以弄到荒谬绝伦的地步,而且在这种情形下,甚至必然会变成荒谬绝伦的东西。”这里,列宁深刻地揭示了真理的()
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0
MostIPlayer-basedproxymechanisms,suchasnetworkaddresstranslation(NAT),onlysupportuni-directionalproxy,fromtheint
最新回复
(
0
)