首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 有解(1,-1,1,-1)T。 (Ⅰ)用导出组的基础解系表示通解; (Ⅱ)写出x=x时的全部解。
已知线性方程组 有解(1,-1,1,-1)T。 (Ⅰ)用导出组的基础解系表示通解; (Ⅱ)写出x=x时的全部解。
admin
2018-01-26
70
问题
已知线性方程组
有解(1,-1,1,-1)
T
。
(Ⅰ)用导出组的基础解系表示通解;
(Ⅱ)写出x=x时的全部解。
选项
答案
将(1,-1,1,-1)
T
代入第1个方程,可得λ=μ。 (Ⅰ)已知方程组的一个特解为(1,-1,1,-1)
T
,因此只需求出导出组的基础解系即可写出通解。 对系数矩阵作初等行变换: [*] 如果2λ-1=0,则 [*] 于是得(1,-3,1,0)
T
和([*],-1,0,1)
T
为导出组的基础解系,因此通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
([*],-1,0,1)
T
,c
1
,c
2
是任意常数。 如果2λ-1≠0,则 [*] 即得(-1,[*],1)
T
为导出组的基础解系,此时通解为 (1,-1,1,-1)
T
+c(-1,[*],1)
T
,c是任意常数。 (Ⅱ)当2λ-1=0时,由已知条件x
2
=x
3
及(Ⅰ)中结论,则有 -1-3c
1
-c
2
=1+c
1
, 从而c
2
=-2-4c
1
,此时通解为 (2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
。 当2λ-1≠0时,由(Ⅰ)中结果,并结合已知条件x
2
=x
3
,则有 [*] 得c=2,此时通解为(-1,0,0,1)
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/nSr4777K
0
考研数学一
相关试题推荐
设f(x)在(一1,1)内二阶连续可导,且f"(x)≠0.证明:(1)对(一1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程
设总体X~N(μ,σ2),X1,X2,X3是来自X的样本,试证:估计量都是μ的无偏估计,并指出它们中哪一个最有效.
微分方程的通解为_________.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
(1)证明:等式(2)求级数的和.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
随机试题
阴茎癌主要病理类型是:
下列哪项属于阳斑的特点
一个7岁的女孩,口内检查发现下颌后部牙槽骨上有两个形态似磨牙的牙齿存在:为鉴别是否有恒磨牙,正确的说法是
A.泡沫细胞B.枭眼样细胞或毛虫样细胞C.小动脉内膜洋葱皮样增厚D.细动脉硬化E.动脉瘤形成动脉粥样硬化复合病变有
幼儿园教育是()和终身教育的奠基阶段。
幼儿园五大领域的学习是指()。
若关系模式中存在非主属性对码的部分依赖,则该关系模式属于______。A.1NFB.2NFC.3NFD.BCNF
Itisoftenobservedthattheagedspendmuchtimethinkingandtalkingabouttheirpastlives,【C1】______aboutthefuture.These
Insomeways,RalphEllison’sprotagonistinInvisibleManemblematizeswhatmightbecalledthe"presentistsimplicity"
Americansarepeopleobsessedwithchild-rearing.Intheirbooks,magazines,talkshows,parenttrainingcourses,WhiteHousesc
最新回复
(
0
)