首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
admin
2015-08-17
64
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
选项
答案
必要性 A是正交矩阵[*]AA
T
=E→|A|=±1.若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
;若|A|=一1,则AA
*
=|A|E=一E,A(一A
*
)=E,而已知AA
t
=E,从而有一A
*
=AT,即a
ij
=一A
ij
.充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=一1,且a
ij
=一A
ij
时,一A
*
=A
T
,AA
*
=|A|E=一E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/y1w4777K
0
考研数学一
相关试题推荐
求微分方程y"+4y’+4y=eax的通解.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
证明:当x>0时,arctanx+
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
求方程y"+2my’+n2y=0的通解;又设y=y(x)是满足初始条件y(0)=a,y’(0)=b的特解,求∫0+∞y(x)dx,其中m>n>0,a,b为常数.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
求A=的特征值和特征向量.
随机试题
脂酸β—氧化一个循环的产物不包括
黄芩含有黄芩苷、黄芩素、汉黄芩苷、汉黄芩素。其中黄芩苷是主要有效成分,具有抗菌、消炎作用,是中成药“注射用双黄连(冻干)”的主要成分。《中国药典》以黄芩苷为指标成分进行含量测定。黄芩苷属于
为了实现进度目标,应选择合理的合同结构,以避免过多的合同交界面而影响工程的进展,这属于进度控制的()。
公司营业用主要资产的抵押、出售或者报废一次超过该资产( )的情况,属于内幕信息。
Somechildrenwanttochallengethemselvesbylearningalanguagedifferentfromtheirparentsspeakathome.
某学校组织一次教工接力比赛,共准备了25件奖品分发给获得一、二、三等奖的职工。为设计获得各级奖励的人数,制定两种方案:若一等奖每人发5件,二等奖每人发3件,三等奖每人发2件,刚好发完奖品;若一等奖每人发6件,二等奖每人发3件,三等奖每人发1件,也刚好发完奖
In1999,thepriceofoilhoveredaround$16abarrel.By2008,ithad(21)______the$100abarrelmark.Thereasonsforthe
垄断高价和垄断低价并未否定价值规律,因为()
Onereasonhumanbeingscanthriveinallkindsofclimatesisthattheycancontrolthequalitiesoftheairintheenclosedsp
A、Thewayforwomentoquitsmoking.B、Thedefectsofsmokingtowomen.C、Themeritsofsmokinginmakingprogress.D、Themerits
最新回复
(
0
)