首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
admin
2015-08-17
96
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
选项
答案
必要性 A是正交矩阵[*]AA
T
=E→|A|=±1.若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
;若|A|=一1,则AA
*
=|A|E=一E,A(一A
*
)=E,而已知AA
t
=E,从而有一A
*
=AT,即a
ij
=一A
ij
.充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=一1,且a
ij
=一A
ij
时,一A
*
=A
T
,AA
*
=|A|E=一E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/y1w4777K
0
考研数学一
相关试题推荐
求微分方程y"+4y’+4y=eax的通解.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
求微分方程y"+5y’+6y=2e-x的通解.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
证明:方程|x|1/4+|x|1/2-1/2cosx=0在(-∞,+∞)内仅有两个实根.
随机试题
A.香砂养胃丸B.加味左金丸C.保和丸D.沉香舒气丸E.附子理中丸胃痛寒凝气滞证选用的中成药是()。
中房学自收到地方登记服务机构受理意见起()个工作日内公告登记结果。
静置设备安装工程量计算的设备重量不包括( )。
关于几种风险度量方法,下列说法错误的有( )。
2015年12月1日,甲公司为了支付购货款向乙公司签发了一张金额为100万元的支票,填写票据时,由于乙公司的全称不确定,甲公司财务人员将收款人名称留白,授权甲公司的业务员王某确定好乙公司全称后再填写收款人名称。王某到乙公司处核实全称并将其准确记入支票后,将
在质量改进中,控制图常用来发现过程的(),起“报警”作用。
按照中国常模结果SDS的标准分在()为中度抑郁。
A、 B、 C、 D、 A每一行中图形的阴影部分均按逆时针旋转。
【波斯帝国】首都师范大学2002年世界上古史、中古史真题;华中师范大学2003年世界古代史真题;首都师范大学2017年历史学基础综合真题
设数组S[n]作为两个栈S1和S2的存储空间,对任何一个栈只有当S[n]全满时才不能进行进栈操作。为这两个栈分配空间的最佳方案是()。
最新回复
(
0
)