首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
admin
2018-08-22
108
问题
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,
讨论f(x)的单调区间、极值.
选项
答案
考虑f(x)的单调性.当x≠一1且x≠0时,有 [*] 令g(x)=(1+x)ln
2
|1+x|—x
2
,有g(0)=0,并且可得 g’(x)=2ln|1+x|+ln
2
|1+x|一2x,有g’(0)=0, [*] 由泰勒公式,有 [*] 又g(0)=0.所以当x>一1且x≠0时f’(x)<0.又因f(x)在x=0处连续,所以f(x)在区间(一1,+∞)内严格单调减少. 此外,由f’(x)的表达式 [*] 直接可知,当x<一1时,分子小于0,分母亦小于0,所以f’(x)>0.从而知f(x)在区间(一∞,一1)内严格单调增加. 所以f(一1)=1是f(x)的极大值,也是唯一的极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/nUj4777K
0
考研数学二
相关试题推荐
求曲线的斜渐近线.
设函数y=f(x)由参数方程(t>一1)所确定,其中ψ(t)具有二阶导数,且已知,证明:函数ψ(t)满足方程ψ"(t)一=3(1+t)
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数,若f(a)<0,则在区间内方程f(x)=0的实根个数为()
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
求定积分的值
函数y=xx在区间[,+∞)上()
设函数f(x)在开区间(a,b)内可导,证明:当导函数f’(x)在(a,b)内有界时,函数f(x)在(a,b)内也有界.
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它在进入大气层开始燃烧的前3s内,减少了体积的,问
随机试题
人类管理思想史上发展最早也最全面的成果是()
党对军队绝对领导的根本原则和制度,发端于()
胰腺损伤的临床特点是()。
某企业于2007年7月1日按面值发行5年期、到期一次还本付息的公司债券,该债券面值总额8000万元,票面年利率为4%,自发行日起计息。假定票面利率与实际利率一致,不考虑相关税费,2008年12月31日该应付债券的账面余额为()万元。
被誉为“舟楫之剂”,能载药上行之品为
下列关于公路工程施上现场环境保护主要要求的说法中,错误的是()。
下列选项中,属于陶行知先生提出的观点是()。
某人偷税、抗税,依法应追究其()。
英美法系中,哪种法律渊源最重要______。
文件根据数据性质,可分为【】文件和【】文件。
最新回复
(
0
)