首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
admin
2018-08-22
69
问题
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,
讨论f(x)的单调区间、极值.
选项
答案
考虑f(x)的单调性.当x≠一1且x≠0时,有 [*] 令g(x)=(1+x)ln
2
|1+x|—x
2
,有g(0)=0,并且可得 g’(x)=2ln|1+x|+ln
2
|1+x|一2x,有g’(0)=0, [*] 由泰勒公式,有 [*] 又g(0)=0.所以当x>一1且x≠0时f’(x)<0.又因f(x)在x=0处连续,所以f(x)在区间(一1,+∞)内严格单调减少. 此外,由f’(x)的表达式 [*] 直接可知,当x<一1时,分子小于0,分母亦小于0,所以f’(x)>0.从而知f(x)在区间(一∞,一1)内严格单调增加. 所以f(一1)=1是f(x)的极大值,也是唯一的极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/nUj4777K
0
考研数学二
相关试题推荐
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设方阵A1与B1合同,A2与B2合同,证明:合同
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA,证明:B相似于对角阵.
设a<b,证明:不等式[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.
f(x)在[0,1]上连续,(0,1)内可导,证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1—ξ-1)f(ξ)
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0,试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设u=其中函数f,g具有二阶连续偏导数,求
随机试题
A.芡实B.赤石脂C.莲子D.浮小麦E.肉豆蔻
动脉瘤最典型的临床表现是()
现场笔录
在房地产测绘中,界址点标号通常包括()。
区域的产业规划环评工作,以()为基础,以节能减排、淘汰落后产能为目标,从源头上优化产能过剩、重复建设行业建设项目的规模、布局以及结构。
在信息分类的基本原则中,项目信息的分类体系应能满足项目参与方高效信息交换的需要,这体现了项目信息分类的()原则。
郑老师在指导新教师时说,了解学生身心发展规律、学习心理等,对做好教育教学工作极为重要。郑老师的体会表明,教师不可忽视()
在武汉某高校内,种有若干棵樱花树,每棵树之间间隔相同。小丁同学在三月樱花开放的一天以相同的速度走在樱花树下,他从第1棵树走到第31棵树用了15分钟,他继续往前走了一阵,经过几棵树后折回去,当他回到第5棵树时共用了40分钟,则小丁同学在折回前继续往前经过了(
设z=f(u,x,y),u=xey,其中f具有二阶偏导数,求
Blackholesarepartofspace.Thesunistheheavieststarintheuniverse.
最新回复
(
0
)