首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时, 讨论f(x)的单调区间、极值.
admin
2018-08-22
50
问题
设f(x)在区间(一∞,+∞)内连续,且当x(1+x)≠0时,
讨论f(x)的单调区间、极值.
选项
答案
考虑f(x)的单调性.当x≠一1且x≠0时,有 [*] 令g(x)=(1+x)ln
2
|1+x|—x
2
,有g(0)=0,并且可得 g’(x)=2ln|1+x|+ln
2
|1+x|一2x,有g’(0)=0, [*] 由泰勒公式,有 [*] 又g(0)=0.所以当x>一1且x≠0时f’(x)<0.又因f(x)在x=0处连续,所以f(x)在区间(一1,+∞)内严格单调减少. 此外,由f’(x)的表达式 [*] 直接可知,当x<一1时,分子小于0,分母亦小于0,所以f’(x)>0.从而知f(x)在区间(一∞,一1)内严格单调增加. 所以f(一1)=1是f(x)的极大值,也是唯一的极值.
解析
转载请注明原文地址:https://kaotiyun.com/show/nUj4777K
0
考研数学二
相关试题推荐
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2)上的最大值和最小值.
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA,证明:B相似于对角阵.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设A是三阶实对称阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
设A,B是n阶矩阵,则下列结论正确的是()
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.证
函数y=xx在区间[,+∞)上()
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求在基(I)和基(Ⅱ)下有相同坐标的全体向量.
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
随机试题
德育过程的主要矛盾是教育者提出的道德要求与________已有品德水平。
电动机启动或运行时,定子与转子间发生冒出火花或烟气的现象是什么原因?
患者求医、医生向患者提供医疗服务,医生和患者不是两个陌生人之间的关系。他们之间具有______特点
A.确认为假药B.确认为劣药C.按假药论处D.按劣药论处超过有效期的药品()
银行与建筑工程公司订立保证合同、为其提供工程保函时,应采取的正确方式是()。
给定资料1.“请为6号小朋友的表演投票”“麻烦给我家孩子投票,每人每天可以投两票”……时下,针对学生(幼儿)的网络投票活动种类繁多,已经成为微信朋友圈的一道“风景”。市民H经常会收到朋友圈发来的网络投票链接。这些投票对象中,有些是朋友的孩子,有些是朋友
尼古丁:香烟
试论述洛克教育思想的主要内容。
简单劳动和复杂劳动的关系是()
AntsHaveBigImpactonEnvironmentas"EcosystemEngineers"ResearchbytheUniversityofExeterhasrevealedthatantshav
最新回复
(
0
)