首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
admin
2018-06-27
38
问题
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
选项
答案
设F(x)是f(x)在(a,b)的原函数.考察 [*] 于是 F’
+
(c)=[*]f(x),F’
-
(c)=[*]f(x). 由于x=c是f(x)的第一类间断点,故[*]f(x)存在,但不相等,即F’
+
(c)≠F’
-
(c). 或 [*] 即F’(c)≠f(c). 这都与F(x)是f(x)在(a,b)的原函数相矛盾.因此f(x)在(a,b)不存在原函数.
解析
f(x)在(a,c)与(c,b)上连续,分别存在原函数,于是关键是看x=c处的情况.
转载请注明原文地址:https://kaotiyun.com/show/nak4777K
0
考研数学二
相关试题推荐
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设函数F(u,v)具有二阶连续偏导数,且z=F(x+y,x+y+z)确定隐函数z=z(x,y),求
设ξ1=[1,3,一2]T,ξ2=[2,一1,3]T是Ax=0的基础解系,Bx=0和Ax=0是同解方程组,η=[2,a,b]T是方程组的解,则η=_________.
设A的特征值,特征向量;
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是()
设平面区域则正确的是()
设区域D是由y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-1),(X,Y)服从区域D上的均匀分布.(1)求(X,Y)的密度函数;(2)求X,Y的边缘密度函数.
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
随机试题
常见工具式现浇墙、壁结构施工模板是()。
当设计对砖基础墙防潮层无具体要求时,防潮层宜采用加适量防水剂的1:2水泥砂浆铺设,其厚度宜为()mm。
各单位在预算管理中的职权主要包括()。
某人按10%的年利率将1000元存入银行账户,若每年计算2次复利(即每年付息2次),则两年后其账户的余额为()。
期货合约以()估值。
(2012上项管)A公司是一家专门从事系统集成和应用软件开发的公司,目前有员工100多人,分属销售部、软件开发部、系统网络部等业务部门。公司销售部主要负责服务和产品的销售工作,将公司现有的产品推销给客户,同时也会根据客户的具体需要,承接信息系统集成项目,并
关于活动目录的描述中,错误的是()。
A.traditionallightingislessdurableanddearerB.alaserexcitedthequantumdotsC.AmericaadoptedLEDSD.graduatestude
【B1】【B3】
Aftermanyattemptsshe______managedtogetpromotion.
最新回复
(
0
)