首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
admin
2018-06-27
87
问题
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
选项
答案
设F(x)是f(x)在(a,b)的原函数.考察 [*] 于是 F’
+
(c)=[*]f(x),F’
-
(c)=[*]f(x). 由于x=c是f(x)的第一类间断点,故[*]f(x)存在,但不相等,即F’
+
(c)≠F’
-
(c). 或 [*] 即F’(c)≠f(c). 这都与F(x)是f(x)在(a,b)的原函数相矛盾.因此f(x)在(a,b)不存在原函数.
解析
f(x)在(a,c)与(c,b)上连续,分别存在原函数,于是关键是看x=c处的情况.
转载请注明原文地址:https://kaotiyun.com/show/nak4777K
0
考研数学二
相关试题推荐
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
试证明:当x>0时,存在θ(x)∈(0,1),使得
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
函数在[-π,π]上的第一类间断点是x=
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设抛物线y=ax2+bx+c过点(0,0)及(1,2),其中a
设D由抛物线y=χ2,y=4χ2及直线y=1所围成.用先χ后y的顺序,将I=f(χ,y)dχdy,化成累次积分.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。
随机试题
考生文件夹下存在一个图像文件“test.bmp”和一个数据库文件“samp3.accdb”。“samp3.accdb”数据库里面已经设计了表对象“tEmp”和“tTemp”、窗体对象“fEmp”、报表对象“rEmp”和宏对象“mEmp”。试在此基础上按照以
“迄今为止这个年轻人只懂拉丁文和《圣经》;但是有朝一日他的巨大的才华施展出来,或者用于讲道,或者用于指导灵魂,这也不是不可能的。"这句出自《红与黑》第30章中的话是()
从估价角度出发,收益性房地产的运营费用不包含()等。
在建设项目环境风险评价中进行事故风险源项分析,下列类型设备属于泄漏的重大风险源的是()。
背景资料某沿海城市电力隧道内径为35m,全长4.9km,管顶覆土厚度大于5m,采用顶管法施工,合同工期1年,检查井兼作工作坑,采用现场制作沉井下沉的施工方案。 电力隧道沿着交通干道走向,距交通干道侧石边附近处仅2m左右。离隧道轴线8m左右,有即将入地
填方路基碾压按“先轻后重”原则进行,最后碾压应采用不小于()级的压路机。
某短期存款凭证于2003年2月10日发出,票面金额为10000元,载明为一年期,年利率为10%。某投资者于2003年11月10日出价购买,当时的市场年利率为8%。则该投资者的购买价格为()元。
两伊战争
Dothebenefitsofstudyabroadjustifythedifficulties?Theideaofgoingoverseasforuniversitystudyisanexcitingprosp
Scientistshavecuredcolorblindnessinmonkeysusinggenetherapy.Aswellasallowingcolor-blindhumanstotellredfrom
最新回复
(
0
)