首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1(1,-2,3,2)T,ξ2(2,0,5,-2)T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是 ( )
设ξ1(1,-2,3,2)T,ξ2(2,0,5,-2)T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是 ( )
admin
2019-08-11
60
问题
设ξ
1
(1,-2,3,2)
T
,ξ
2
(2,0,5,-2)
T
是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是 ( )
选项
A、α
1
=(1,-3,3,3)
T
.
B、α
2
= (0,0,5,-2)
T
.
C、α
3
=(-1,-6,-1,10)
T
.
D、α
4
=(1,6,1,0)
T
.
答案
C
解析
已知Ax=0的基础解系为ξ
1
,ξ
2
,则α
i
,i=1,2,3,4是Ax=0的解向量〈=〉α
i
可由ξ
1
,ξ
2
线性表出〈=〉非齐次线性方程组ξ
1
y
1
+ξ
2
y
2
=α
i
有解.逐个判别α
i
较麻烦,合在一起作初等行变换进行判别较方便.
显然因r(ξ
1
,ξ
2
)=r(ξ
1
,ξ
2
|α
3
)=2,ξ
1
y
1
+ξ
2
y
2
=α
3
有解,故α
1
,α
2
,α
3
是Ax=0的解向量.
转载请注明原文地址:https://kaotiyun.com/show/nfN4777K
0
考研数学二
相关试题推荐
设微分方程作自变量变换t=lnx以及因变量变换,请将原微分方程变换为z关于t的微分方程;
设A是3阶方阵,有3个特征值为0,1,1,且不相似于对角矩阵,则r(E-A)+r(A)=______.
求
设.则f[f(x)]=______.
设讨论曲线y=f(x)的凹凸性、拐点、渐近线,并根据以上的讨论结果,画出函数y=f(x)的大致图形.
设平面区域D是由参数方程0≤t≤2π给出的曲线与x轴围成的区域,求二重积分,其中常数a>0.[img][/img]
设f″(x0)存在,且,则f″(x0)=______.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
(08年)设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
随机试题
下列属于橡胶塞的质量要求的有
沟通的实质是()和被理解的过程。
门诊中年男性病人中表现为肾绞痛时应首先考虑到
某男,64岁。因多饮、多食、多尿,体重减轻3年余就诊。3年来患者无明显诱因出现烦渴引饮,消谷善饥,小便频数而量多,尿液浑浊而黄,大便干燥秘结;舌红,苔薄黄,脉滑数。平素嗜好肥甘厚味,长期饮酒,每天白酒半斤,运动量少,体重从100kg下降至80kg。查空腹血
积极型管理的唯一目标是利润最大化。( )
在招标人自行办理工程项目的招标工作时,招标人必须具有()。
在地陪的前期业务准备中,落实团队预订服务的规范操作程序包括哪些工作内容?
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
J2SE1.4中提供了java.nio包,该包支持的特点有( )。
Itneveroccurredtohimthatheandhisdoingwerenotofthemostintenseandfascinatinginteresttoanyonewithwhomhecame
最新回复
(
0
)