首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32一4x1x2—4x1x3+2a2x3,经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
设二次型f=x12+x22+x32一4x1x2—4x1x3+2a2x3,经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
admin
2021-11-09
85
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
一4x
1
x
2
—4x
1
x
3
+2a
2
x
3
,经正交变换化为3y
1
2
+3y
2
2
+by
3
2
,求a,b的值及所用正交变换。
选项
答案
二次型及其标准形的矩阵分别是 [*] 由于是用正交变换化为标准形,故A与B不仅合同而且相似。由1+1+1=3+3+b得b=一3。 对λ=3,则有 [*] 因此a=一2(二重根)。由(3E—A)x=0,得特征向量α
1
=(1,一1,0)
T
,α
2
=(1,0,一1)
T
。由(一3E一A)x=0,得特征向量α
3
=(1,1,1)
T
。因为λ=3是二重特征值,对α
1
,α
2
正交化有β
1
=α
1
=(1,一1,0)
T
,[*] 经正交交换x=Cy,二次型化为3y
1
2
+3y
2
2
一3y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/ngy4777K
0
考研数学二
相关试题推荐
设A=(α1,α2,α3,α4,α5),其中α1,α2,α3线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
设A为四阶非零矩阵,且r(A*)=1,则().
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.B=(α1,α2,α3),求Bx=b的通解;
设a1=1,当n>1时,an+1=,证明:数列{an}收敛并求其极限。
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
随机试题
视网膜母细胞瘤容易发生坏死、钙化,在声像图上表现为“钙斑”,“钙斑”的超声检出率是:
肝进行性肿大,质地坚硬如前额,多见于()
A.肺俞、列缺B.太冲、中脘C.脾俞、气海D.足三里、三阴交E.神阙、关元
下列关于人大代表的表述中,说法错误的是:
某施工单位中标承包AB路段双向4车道高速公路交通工程的施工。该路段全长105km,设计速度100km/h,有8个互通式立交,采用封闭式收费,使用非接触式IC卡,全线设8个匝道收费站,收费站监控室有人值守进行收费管理,设一个监控、收费及通信分中心,并且在监控
【背景材料】某机电安装工程公司承接某综合性设施的通风空调安装工程,在施工准备阶段,该机电安装工程公司制定了施工方法和施工工艺,在制定过程中兼顾了进度控制、质量控制、成本控制三大目标,使得对各工序施工活动的质量得到有效控制。该机电安装工程公司对施工环
5年后,对释放过灭火剂的储瓶、相关阀门等部件进行一次(),试验合格方可继续使用。
Withonlyaboutl,000pandasleftintheworld,Chinaisdesperatelytryingtoclonetheanimalandsavetheendangeredspecies.T
A、 B、 C、 C询问最后期限的where疑问句→用“Notuntil+时间名词”回答
贸易条件
最新回复
(
0
)