首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk—1线性表示。
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk—1线性表示。
admin
2017-12-29
54
问题
设向量组α
1
,α
2
,…,α
m
线性相关,且α
1
≠0,证明存在某个向量α
k
(2≤k≤m),使α
k
能由α
1
,α
2
,…,α
k—1
线性表示。
选项
答案
因为向量组α
1
,α
2
,…,α
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
α
1
+λ
2
α
2
+…+λ
m
α
m
=0。 因λ
1
,λ
2
,…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
α
1
=0。又因为α
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有α
k
=[*]α
k—1
,k≠1,因此向量α
k
能由α
1
,α
2
,…,α
k—1
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/nhX4777K
0
考研数学三
相关试题推荐
设三元线性方程组有通解求原方程组.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:求|A|.
对于级数,其中um>0(n=1,2,…),则下列命题正确的是()
函数y=Cx+(其中C是任意常数)对微分方程=x而言,()
设向量α=[α1,α2,…,αn]T≠0,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αTβ,求:A的特征值和特征向量;
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
求y′=的通解,及其在初始条件y|x=1=0下的特解.
[*]按题设积分次序求不出积分值,可调换求之.为此先画出二重积分的区域.解所给积分的积分区域用D表示,如右图所示.该积分改用极坐标系计算,得到
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
(2005年)设f(x)=xsinx+cosx,下列命题中正确的是()
随机试题
一般来说,背景吸收是使吸光度增加而产生正误差。()
下列病变不是T1及T2加权像均呈高信号的是
A、刺痛拒按,固定不移,舌暗,脉涩B、气短疲乏,脘腹坠胀,舌淡,脉弱C、胸胁胀闷窜痛,时轻时童,脉弦D、面色淡白,口唇爪甲色淡,舌淡,脉细E、少气懒言,疲乏无力,自汗,舌淡,脉虚血瘀证可见的症状是
《公司法》对公司的出资形式的限额做出限制的是( )。
消火栓的间距应小于或等于()。
常用的确定设备最佳更新期的方法有低劣化数值法和()。
为了预防病毒,在计算机中安装了操作系统补丁(windowsupdate)的防病毒软件,也按时升级了病毒定义文件,仍旧被种了木马程序(即被感染病毒),最不可能的原因是()。
以可见光波的长短为序,人类感觉到的颜色依次为()。
汉代选拔和任用官吏的方法有()
在计算机指令中,规定其所执行操作功能的部分称为()。
最新回复
(
0
)