首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk—1线性表示。
设向量组α1,α2,…,αm线性相关,且α1≠0,证明存在某个向量αk(2≤k≤m),使αk能由α1,α2,…,αk—1线性表示。
admin
2017-12-29
73
问题
设向量组α
1
,α
2
,…,α
m
线性相关,且α
1
≠0,证明存在某个向量α
k
(2≤k≤m),使α
k
能由α
1
,α
2
,…,α
k—1
线性表示。
选项
答案
因为向量组α
1
,α
2
,…,α
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
α
1
+λ
2
α
2
+…+λ
m
α
m
=0。 因λ
1
,λ
2
,…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
α
1
=0。又因为α
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有α
k
=[*]α
k—1
,k≠1,因此向量α
k
能由α
1
,α
2
,…,α
k—1
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/nhX4777K
0
考研数学三
相关试题推荐
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
变换下列二次积分的积分次序:∫01f(x,y)dx;
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设f(x)=xsinx+cosx,下列命题中正确的是
设x=rcosθ,y=rsinθ,把下列直角坐标系中的累次积分改写成极坐标系(r,θ)中的累次积分:
判别下列正项级数的敛散性:(Ⅰ),其中{xn}是单调递增而且有界的正数数列.
随机试题
设由抛物线y=x2与y=2-x2所围成的平面图形,试求:此平面图形的面积;
患者,女,68岁。CT表现:直肠壁局限性增厚,外壁毛糙,周围脂肪内见密度增高的结节影,周围筋膜增厚,拟诊为直肠癌,根据Thoeni分期应属于
机体排斥微生物侵袭的能力属于下列哪一种免疫功能
关于子宫的解剖,下列哪项是错误的( )
下述使用阿托品解救有机磷中毒的注意事项中,正确的是()。
业主主供应的材料、设备使用前,负责检验或试验的人和承担检验或试验费用的人分别是()。
Youcancloseyourumbrella.Therainseems______.
20世纪60、70年代我国成功试射“两弹一星”表明,中国在尖端科技领域的某些方面正接近世界先进水平,其中“两弹”是指()
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
Intheworldofentertainment,TVtalkshowshaveundoubtedlyfloodedeveryinchofspaceondaytimetelevision.Andanyonewho
最新回复
(
0
)