首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组 (1) 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 (2) 的通解是___________。
已知齐次线性方程组 (1) 有通解k1(2,一1,0,1)T+k2(3,2,1,0)T,则方程组 (2) 的通解是___________。
admin
2019-01-19
55
问题
已知齐次线性方程组
(1)
有通解k
1
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
,则方程组
(2)
的通解是___________。
选项
答案
k
2
(13,一3,1,5)
T
,k
2
为任意常数
解析
方程组(2)的通解一定会在方程组(1)的通解之中,且是方程组(1)的通解中满足(2)中第三个方程的解,将(1)的通解
代入(2)的第三个方程,得
(2k
1
+3k
2
)一2(一k
1
+2k
2
)+0k
2
+k
1
=0,
即5k
1
=k
2
,将其代入(1)的通解中,得方程组(2)的通解为
5k
2
(2,一1,0,1)
T
+k
2
(3,2,1,0)
T
=k
2
(13,一3,1,5)
T
,k
2
为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/nmP4777K
0
考研数学三
相关试题推荐
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,证明:F(x)=f(x)[1+|ln(1+arctanx)||在x=0处可导的充分必要条件是f(0)=0.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量,证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆阵.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
二次型4x22一3x32+2ax1x2—4x1x3+8x2x3经正交变换化为标准形y12+6y22+by32,则a=__________.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
随机试题
加碱化剂的目的是消除氢离子的干扰。
未经有关部门批准,医师擅自开办诊所,卫生行政部门可采取的措施不包括
A.AAI起搏器B.VVI起搏器C.VAT起搏器D.DDD起搏器E.VOO起搏器测得窦房结恢复时间为2400ms,房室结文氏点为160次/分,可选用
A.当量剂量B.有效剂量C.比释动能D.吸收剂量E.吸收剂量率当身体各部分受到不同程度照射时,对人体造成的总的随机性辐射损伤是
关于总会计师,下列说法正确的有()。
按照(),金融机构可分为金融调控机构和金融运行机构。
外国旅游者在来华途中行李确系丢失,应由()向有关航空公司索赔。
从警察起源上看,()。
下列语句中,正确的是()。
Careforchildrenandolderpeoplehasrecentlyhittheheadlines.Governmentannouncementsonfundingreformshaveputcarefir
最新回复
(
0
)