首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
admin
2019-03-30
56
问题
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
[*]
证明存在ξ∈(0,3),使f"(ξ)=0.
选项
答案
因f(x)在[2,3]上连续,设f(x)在此区间上的最大值为M,最小值为m,则x∈[2,3]时,有 m≤f(2)≤M,m≤f(3)≤M, 故 [*] 由介值定理知,存在δ∈(2,3),使[*]于是有f(0)=f(η)=f(δ). 对f(x)分别在[0,η]上,在[η,δ]上由罗尔定理知,至少存在一点ξ∈(0,η)[*](0,2),满足f’(ξ
1
)=0;至少存在一点ξ
2
∈(η,δ)[*](0,3),满足f’(ξ
2
)=0. 又因f’(x)在[ξ
1
,ξ
2
]上可导,且f’(ξ
1
)=f’(ξ
2
),由罗尔定理知,至少有一点ξ∈(ξ
1
,ξ
2
)[*](0,3),使f"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oaP4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
若曲线y=x3+ax2+bx+1有拐点(—1,0),则b=________。
设f(x,y)连续,且f(x,y)=x+f(u,υ)dudυ,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
已知函数z=f(x,y)的全微分出=2xdx—2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=______.
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
微分方程y’’-y’-6y=(x+1)e-2x的特解形式为().
随机试题
1822年,英国人巴贝奇首先提出来整个计算过程自动化的概念,设计出了第一台通用自动时序控制机械式计算机,称为________。
为观察肾的分泌排泄功能应做的检查是( )
预防HBeAg阳性母亲所生的新生儿HBV感染最有效的措施是
下列哪种情况在发生垂体危象时最为多见
据统计报载:截至到2001年年底,某市有高科技园区3个,已征土地6325hm2,占该市各类开发区已征土地总面积的18%。该城市在2002年年初,为了合理的利用已征土地,综合制定了科学的规划布局方案,将废弃的小型工场、市场等以及公共设施进行了重新布置,对城
工程项目质量控制系统的构成,依控制内容划分不正确的为()。
年化收益率有______与______之分。( )
对幼儿园活动的正确理解是()。
Studythedrawingcarefullyandwriteanessayof160-200words.Youshould1)describethedrawingbriefly,2)interpretthe
A、Sheagreeswithdieting.B、Sheopposesdieting.C、Shenevercaresaboutdieting.D、Shehasbeenonadiet.B信息明示题。对话一开始,男士询问女士
最新回复
(
0
)