首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量. 求矩阵A.
设A是三阶实对称矩阵,r(A)=1,A2一3A=0,设(1,1,一1)T为A的非零特征值对应的特征向量. 求矩阵A.
admin
2018-04-15
74
问题
设A是三阶实对称矩阵,r(A)=1,A
2
一3A=0,设(1,1,一1)
T
为A的非零特征值对应的特征向量.
求矩阵A.
选项
答案
设特征值0对应的特征向量为(x
1
,x
2
,x
3
)
T
,则x
1
+x
2
一x
3
=0,则0对应的特征向量为α
2
=(一1,1,0)
T
,α
3
=(1,0,1)
T
,令 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ocX4777K
0
考研数学三
相关试题推荐
若当x→0时,(1+2x)x—cosx~ax2,则a=____________.
设随机变量X与Y相互独立同分布,其中P{X—i}=,i=1,2,3令U=max(X,Y),V=min(X,Y).(Ⅰ)求(U,V)的联合分布;(Ⅱ)求P{U=V);(Ⅲ)判断U,V是否相互独立,若不相互独立,计算U,V的相关系数.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(-1,1,0,2)T+k(1,-1,2,0)T.求α1,α2,α3,α4,β的一个极大线性无关组.
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.(X,Y)的概率分布,
求二元函数f(x,y)=e-xy在区域D={(x,y)|x2+4y2≤1}上的最大值和最小值.
设二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值.用正交变换将二次型f化为标准形,并写出所用正交变换;
差分方程yt+1+2yt=5t2的通解为________.
设四次曲线y=ax4+bx3+cx2+dx+f经过点(0,0),并且点(3,2)是它的一个拐点,过该曲线上点(0,0)与点(3,2)的切线交于点(2,4),则该四次曲线的方程为y=________.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex及x轴围成的向x轴负向无限伸展的平面图形记为D.(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=1旋转所成的旋转体的体积V.
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
随机试题
TTL与门电路正常工作时能带动同类与非门的最大数目称为扇出系数。()
A.脂性肾病B.膜性肾病C.膜增生性肾小球肾炎D.系膜增生性肾小球肾炎引起儿童肾病综合征的最常见原因是
患者男,54岁。因右上颌第一磨牙颊侧牙龈长期瘘管、反复面颊部肿胀而就诊,抗感染治疗后面颊部肿胀消退。本次就诊临床检查见右上颌第一磨牙残冠,牙体破坏严重,患者自诉20年前曾充填(治疗方法不详),现充填物脱落,周围牙龈无明显红肿,颊侧龈近根尖区仍见瘘管,无明显
接受婚前医学检查的人员对检查结果持有异议的
患者,男性,64岁,肝衰竭。为患者做口腔护理时,护士应重点观察的内容是
特许经营项目合作者选择方式中,()最能体现公开、公平和公正的原则。
下列不属于行政诉讼提起应具备的条件是()。
A公司记账本位币为人民币,2012年有关业务如下:(1)A公司通过收购,持有香港甲上市公司发行在外有表决权股份的80%从而拥有该公司的绝对控制权,甲公司的记账本位币为港币。(2)与境外某公司合资在上海浦东新建乙公司,乙公司的记账本位币为美元,A公司参与
疟疾热寄生虫的血红细胞在120夭后被排除出入体。由于这种寄生虫无法转移到新一代的血红细胞内,在一个人迁移到一个没有疟疾的地区120天后;发生在这个人身上的任何发烧情况都不是由疟疾热寄生虫引起的。以下哪一项如果正确,将最严重地削弱以上的结论?
WCS的3个优点是什么?A、无线规划B、无线设计C、无线管理D、无线RF标识(tag)
最新回复
(
0
)